Trainable Bilateral Filter Layer (PyTorch)

Overview

Trainable Bilateral Filter Layer (PyTorch)

This repository contains our GPU-accelerated trainable bilateral filter layer (three spatial and one range filter dimension) that can be directly included in any Pytorch graph, just as any conventional layer (FCL, CNN, ...). By calculating the analytical derivative of the bilateral filter with respect to its parameters and its input, the (so far) hyperparameters can be automatically optimized via backpropagation for a calculated loss.

Our corresponding paper Ultra low-parameter denoising: Trainable bilateral filter layers in computed tomography can be found on arXiv.

Implementation:

The general structure of the implementation follows the PyTorch documentation for creating custom C++ and CUDA extensions. The forward pass implementation of the layer is based on code from the Project MONAI framework, originally published under the Apache License, Version 2.0. The correct implementation of the analytical forward and backward pass can be verified by running the gradcheck.py script, comparing numerical gradients with the derived analytical gradient using the PyTorch built-in gradcheck function.

Setup:

The C++/CUDA implemented forward and backward functions are compiled via the setup.py script using setuptools:

  1. Create and activate a python environment (python>=3.7).
  2. Install Torch (tested versions: 1.7.1, 1.9.0).
  3. Navigate into the extracted repo.
  4. Compile/install the bilateral filter layer by calling
python setup.py install

Example scripts:

  • Try out the forward pass by running the example_filter.py (requires Matplotlib and scikit-image).
  • Run the gradcheck.py script to verify the correct gradient implementation.
  • Run example_optimization.py to optimize the parameters of a bilateral filter layer to automatically denoise an image.

Optimized bilateral filter prediction:

Citation:

If you find our code useful, please cite our work

@article{wagner2022ultra,
  title={Ultra low-parameter denoising: Trainable bilateral filter layers in computed tomography},
  author={Wagner, Fabian and Thies, Mareike and Gu, Mingxuan and Huang, Yixing and Pechmann, Sabrina and Patwari, Mayank and Ploner, Stefan and Aust, Oliver and Uderhardt, Stefan and Schett, Georg and Christiansen, Silke and Maier, Andreas},
  journal={arXiv preprint arXiv:2201.10345},
  year={2022}
}
You might also like...
๐Ÿ“ฆ PyTorch based visualization package for generating layer-wise explanations for CNNs.
๐Ÿ“ฆ PyTorch based visualization package for generating layer-wise explanations for CNNs.

Explainable CNNs ๐Ÿ“ฆ Flexible visualization package for generating layer-wise explanations for CNNs. It is a common notion that a Deep Learning model i

PyTorch Implementation of NCSOFT's FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis
PyTorch Implementation of NCSOFT's FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis

FastPitchFormant - PyTorch Implementation PyTorch Implementation of FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis. Qu

[CVPR 2021] Official PyTorch Implementation for
[CVPR 2021] Official PyTorch Implementation for "Iterative Filter Adaptive Network for Single Image Defocus Deblurring"

IFAN: Iterative Filter Adaptive Network for Single Image Defocus Deblurring Checkout for the demo (GUI/Google Colab)! The GUI version might occasional

Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper
Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper

Continual Learning With Filter Atom Swapping Pytorch Implementation of Continual Learning With Filter Atom Swapping (ICLR'22 Spolight) Paper If find t

Predictive AI layer for existing databases.
Predictive AI layer for existing databases.

MindsDB is an open-source AI layer for existing databases that allows you to effortlessly develop, train and deploy state-of-the-art machine learning

Predictive AI layer for existing databases.
Predictive AI layer for existing databases.

MindsDB is an open-source AI layer for existing databases that allows you to effortlessly develop, train and deploy state-of-the-art machine learning

An abstraction layer for mathematical optimization solvers.
An abstraction layer for mathematical optimization solvers.

MathOptInterface Documentation Build Status Social An abstraction layer for mathematical optimization solvers. Replaces MathProgBase. Citing MathOptIn

Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021)

Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021) Citation Please cite as: @inproceedings{liu2020understan

Implementation of the ๐Ÿ˜‡ Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones
Implementation of the ๐Ÿ˜‡ Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones

HaloNet - Pytorch Implementation of the Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones. This re

Comments
  • 3D case example

    3D case example

    Hi, I am grateful that you have shared such awesome codes. I have downloaded the codes and tested 2D case. It works well. But when I used 3D images, the results seemed weird. As shown below. image

    The input 3D image is like this: image

    Could you provide 3D demo case? Thank you very much!

    opened by cs123951 2
Releases(1.1.0)
Owner
FabianWagner
FabianWagner
StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN Pytorch implementation Inception score evaluation StackGAN-v2-pytorch Tensorflow implementation for reproducing main results in the paper Sta

Han Zhang 1.8k Dec 21, 2022
PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Representation

How to Reproduce our Results This repository contains PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Represen

opcrisis 46 Dec 15, 2022
The Noise Contrastive Estimation for softmax output written in Pytorch

An NCE implementation in pytorch About NCE Noise Contrastive Estimation (NCE) is an approximation method that is used to work around the huge computat

Kaiyu Shi 287 Nov 25, 2022
Code for project: "Learning to Minimize Remainder in Supervised Learning".

Learning to Minimize Remainder in Supervised Learning Code for project: "Learning to Minimize Remainder in Supervised Learning". Requirements and Envi

Yan Luo 0 Jul 18, 2021
This repository contains the implementation of the paper: Federated Distillation of Natural Language Understanding with Confident Sinkhorns

Federated Distillation of Natural Language Understanding with Confident Sinkhorns This repository provides an alternative method for ensembled distill

Deep Cognition and Language Research (DeCLaRe) Lab 11 Nov 16, 2022
alfred-py: A deep learning utility library for **human**

Alfred Alfred is command line tool for deep-learning usage. if you want split an video into image frames or combine frames into a single video, then a

JinTian 800 Jan 03, 2023
Code for our NeurIPS 2021 paper 'Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation'

Exploiting the Intrinsic Neighborhood Structure for Source-free Domain Adaptation (NeurIPS 2021) Code for our NeurIPS 2021 paper 'Exploiting the Intri

Shiqi Yang 53 Dec 25, 2022
DSL for matching Python ASTs

py-ast-rule-engine This library provides a DSL (domain-specific language) to match a pattern inside a Python AST (abstract syntax tree). The library i

1 Dec 18, 2021
A new GCN model for Point Cloud Analyse

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for VA-GCN in pytorch. Classification (ModelNet10/40) Data Preparation D

12 Feb 02, 2022
A clean and scalable template to kickstart your deep learning project ๐Ÿš€ โšก ๐Ÿ”ฅ

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project ๐Ÿš€ โšก ๐Ÿ”ฅ Click on Use this template to initialize new re

Hyunsoo Cho 1 Dec 20, 2021
Code for the paper: "On the Bottleneck of Graph Neural Networks and Its Practical Implications"

On the Bottleneck of Graph Neural Networks and its Practical Implications This is the official implementation of the paper: On the Bottleneck of Graph

75 Dec 22, 2022
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Environments Effi

Weirui Ye 671 Jan 03, 2023
Optimizers-visualized - Visualization of different optimizers on local minimas and saddle points.

Optimizers Visualized Visualization of how different optimizers handle mathematical functions for optimization. Contents Installation Usage Functions

Gautam J 1 Jan 01, 2022
The repository offers the official implementation of our BMVC 2021 paper in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization This is the official implementaion of paper TS-CAM: Token Semant

vasgaowei 112 Jan 02, 2023
Cognition-aware Cognate Detection

Cognition-aware Cognate Detection The repository which contains our code for our EACL 2021 paper titled, "Cognition-aware Cognate Detection". This wor

Prashant K. Sharma 1 Feb 01, 2022
Monitora la qualitร  della ricezione dei segnali radio nelle province siciliane.

FMap-server Monitora la qualitร  della ricezione dei segnali radio nelle province siciliane. Conversion data Frequency - StationName maps are stored in

Triglie 5 May 24, 2021
Detecting Blurred Ground-based Sky/Cloud Images

Detecting Blurred Ground-based Sky/Cloud Images With the spirit of reproducible research, this repository contains all the codes required to produce t

1 Oct 20, 2021
Code for "Reconstructing 3D Human Pose by Watching Humans in the Mirror", CVPR 2021 oral

Reconstructing 3D Human Pose by Watching Humans in the Mirror Qi Fang*, Qing Shuai*, Junting Dong, Hujun Bao, Xiaowei Zhou CVPR 2021 Oral The videos a

ZJU3DV 178 Dec 13, 2022
banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services.

banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services. This library is developed by Bandit ML and ex-authors of Facebook's app

Bandit ML 51 Dec 22, 2022