Deep Convolutional Generative Adversarial Networks

Overview

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

Alec Radford, Luke Metz, Soumith Chintala

All images in this paper are generated by a neural network. They are NOT REAL.

Full paper here: http://arxiv.org/abs/1511.06434

###Other implementations of DCGAN

##Summary of DCGAN We

  • stabilize Generative Adversarial networks with some architectural constraints
    • Replace any pooling layers with strided convolutions (discriminator) and fractional-strided convolutions (generator).
    • Use batchnorm in both the generator and the discriminator
    • Remove fully connected hidden layers for deeper architectures. Just use average pooling at the end.
    • Use ReLU activation in generator for all layers except for the output, which uses Tanh.
    • Use LeakyReLU activation in the discriminator for all layers.
  • use the discriminator as a pre-trained net for CIFAR-10 classification and show pretty decent results.
  • generate really cool bedroom images that look super real
  • To convince you that the network is not cheating:
    • show the interpolated latent space, where transitions are really smooth and every image in the latent space is a bedroom.
    • show bedrooms after one epoch of training (with a 0.0002 learning rate), come on the network cant really memorize at this stage.
  • To explore what the representations that the network learnt,
    • show deconvolution over the filters, to show that maximal activations occur at objects like windows and beds
    • figure out a way to identify and remove filters that draw windows in generation.
      • Now you can control the generator to not output certain objects.
  • Because we are tripping
    • Smiling woman - neutral woman + neutral man = Smiling man. Whuttttt!
    • man with glasses - man without glasses + woman without glasses = woman with glasses. Omg!!!!
  • learnt a latent space in a completely unsupervised fashion where ROTATIONS ARE LINEAR in this latent space. WHHHAAATT????!!!!!!
  • Figure 11, trained on imagenet has a plane with bird legs. so cooool.

Bedrooms after 5 epochs

Generated bedrooms after five epochs of training. There appears to be evidence of visual under-fitting via repeated textures across multiple samples.

Bedrooms after 1 epoch

Generated bedrooms after one training pass through the dataset. Theoretically, the model could learn to memorize training examples, but this is experimentally unlikely as we train with a small learning rate and minibatch SGD. We are aware of no prior empirical evidence demonstrating memorization with SGD and a small learning rate in only one epoch.

Walking from one point to another in bedroom latent space

Interpolation between a series of 9 random points in Z show that the space learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In the 6th row, you see a room without a window slowly transforming into a room with a giant window. In the 10th row, you see what appears to be a TV slowly being transformed into a window.

Forgetting to draw windows

Top row: un-modified samples from model. Bottom row: the same samples generated with dropping out ”window” filters. Some windows are removed, others are transformed into objects with similar visual appearance such as doors and mirrors. Although visual quality decreased, overall scene composition stayed similar, suggesting the generator has done a good job disentangling scene representation from object representation. Extended experiments could be done to remove other objects from the image and modify the objects the generator draws.

Google image search from generations

Arithmetic on faces

Rotations are linear in latent space

More faces

Album covers

Imagenet generations

Owner
Alec Radford
Alec Radford
GrailQA: Strongly Generalizable Question Answering

GrailQA is a new large-scale, high-quality KBQA dataset with 64,331 questions annotated with both answers and corresponding logical forms in different syntax (i.e., SPARQL, S-expression, etc.). It ca

OSU DKI Lab 76 Dec 21, 2022
PyTorch implementation of convolutional neural networks-based text-to-speech synthesis models

Deepvoice3_pytorch PyTorch implementation of convolutional networks-based text-to-speech synthesis models: arXiv:1710.07654: Deep Voice 3: Scaling Tex

Ryuichi Yamamoto 1.8k Jan 08, 2023
pip install python-office

🍬 python for office 👉 http://www.python4office.cn/ 👈 🌎 English Documentation 📚 简介 Python-office 是一个 Python 自动化办公第三方库,能解决大部分自动化办公的问题。而且每个功能只需一行代码,

程序员晚枫 272 Dec 29, 2022
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs

Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs ArXiv Abstract Convolutional Neural Networks (CNNs) have become the de f

Philipp Benz 12 Oct 24, 2022
Sparse-dense operators implementation for Paddle

Sparse-dense operators implementation for Paddle This module implements coo, csc and csr matrix formats and their inter-ops with dense matrices. Feel

北海若 3 Dec 17, 2022
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
(EI 2022) Controllable Confidence-Based Image Denoising

Image Denoising with Control over Deep Network Hallucination Paper and arXiv preprint -- Our frequency-domain insights derive from SFM and the concept

Images and Visual Representation Laboratory (IVRL) at EPFL 5 Dec 18, 2022
CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021

CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021 How to cite If you use these data please cite the o

Digital Linguistics 2 Dec 20, 2021
Multi-objective constrained optimization for energy applications via tree ensembles

Multi-objective constrained optimization for energy applications via tree ensembles

C⚙G - Imperial College London 1 Nov 19, 2021
Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign language recognition, and full-body gesture control.

Pose Detection Project Description: Human pose estimation from video plays a critical role in various applications such as quantifying physical exerci

Hassan Shahzad 2 Jan 17, 2022
A PyTorch implementation of "CoAtNet: Marrying Convolution and Attention for All Data Sizes".

CoAtNet Overview This is a PyTorch implementation of CoAtNet specified in "CoAtNet: Marrying Convolution and Attention for All Data Sizes", arXiv 2021

Justin Wu 268 Jan 07, 2023
In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard test set accuracy

PixMix Introduction In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard te

Andy Zou 79 Dec 30, 2022
[ICCV'21] Pri3D: Can 3D Priors Help 2D Representation Learning?

Pri3D: Can 3D Priors Help 2D Representation Learning? [ICCV 2021] Pri3D leverages 3D priors for downstream 2D image understanding tasks: during pre-tr

Ji Hou 124 Jan 06, 2023
ElasticFace: Elastic Margin Loss for Deep Face Recognition

This is the official repository of the paper: ElasticFace: Elastic Margin Loss for Deep Face Recognition Paper on arxiv: arxiv Model Log file Pretrain

Fadi Boutros 113 Dec 14, 2022
TipToiDog - Tip Toi Dog With Python

TipToiDog Was ist dieses Projekt? Meine 5-jährige Tochter spielt sehr gerne das

1 Feb 07, 2022
Interactive Image Generation via Generative Adversarial Networks

iGAN: Interactive Image Generation via Generative Adversarial Networks Project | Youtube | Paper Recent projects: [pix2pix]: Torch implementation for

Jun-Yan Zhu 3.9k Dec 23, 2022
Task-based end-to-end model learning in stochastic optimization

Task-based End-to-end Model Learning in Stochastic Optimization This repository is by Priya L. Donti, Brandon Amos, and J. Zico Kolter and contains th

CMU Locus Lab 164 Dec 29, 2022
Learning to Map Large-scale Sparse Graphs on Memristive Crossbar

Release of AutoGMap:Learning to Map Large-scale Sparse Graphs on Memristive Crossbar For reproduction of our searched model, the Ubuntu OS is recommen

2 Aug 23, 2022
Audio2Face - Audio To Face With Python

Audio2Face Discription We create a project that transforms audio to blendshape w

FACEGOOD 724 Dec 26, 2022
A project to make Amazon Echo respond to sign language using your webcam

Making Alexa respond to Sign Language using Tensorflow.js Try the live demo Read the Blog Post on Tensorflow's Blog Coming Soon Watch the video This p

Abhishek Singh 444 Jan 03, 2023