In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard test set accuracy

Related tags

Deep Learningpixmix
Overview

PixMix

Introduction

In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard test set accuracy. These other goals include out-of-distribution (OOD) robustness, prediction consistency, resilience to adversaries, calibrated uncertainty estimates, and the ability to detect anomalous inputs. However, improving performance towards these goals is often a balancing act that today’s methods cannot achieve without sacrificing performance on other safety axes. For instance, adversarial training improves adversarial robustness but sharply degrades other classifier performance metrics. Similarly, strong data augmentation and regularization techniques often improve OOD robustness but harm anomaly detection, raising the question of whether a Pareto improvement on all existing safety measures is possible. To meet this challenge, we design a new data augmentation strategy utilizing the natural structural complexity of pictures such as fractals, which outperforms numerous baselines, is near Pareto-optimal, and comprehensively improves safety measures.

Read the paper here.

Pseudocode

Contents

pixmix_utils.py includes reference implementation of augmentations and mixings used in PixMix.

We also include PyTorch implementations of PixMix on both CIFAR-10/100 and ImageNet in cifar.py and imagenet.py respectively, which both support training and evaluation on CIFAR-10/100-C and ImageNet-C/R.

Usage

Training recipes used in our paper:

CIFAR:

python cifar.py \
  --dataset 
   
     \
  --data-path 
    
      \
  --mixing-set 
     
       \
  --all-ops

     
    
   

ImageNet 1K:

python imagenet.py \
  --data-standard 
   
     \
  --data-val 
    
      \
  --imagenet-r-dir 
     
       \
  --imagenet-c-dir 
      
        \
  --mixing-set 
       
         \ --num-classes 1000 \ --all-ops 
       
      
     
    
   

Mixing Set

The mixing set of fractals and feature visualizations used in the paper can be downloaded here.

Pretrained Models

Weights for a 40x4-WRN CIFAR-10/100 classifier trained with PixMix for 100 epochs are available here.

Weights for a ResNet-50 ImageNet classifier trained with PixMix for 90 and 180 epochs are available here.

Citation

If you find this useful in your research, please consider citing:

@article{hendrycks2022robustness,
  title={PixMix: Dreamlike Pictures Comprehensively Improve Safety Measures},
  author={Dan Hendrycks and Andy Zou and Mantas Mazeika and Leonard Tang and Dawn Song and Jacob Steinhardt},
  journal={arXiv preprint arXiv:2112.05135},
  year={2022}
}
Owner
Andy Zou
Andy Zou
Split Variational AutoEncoder

Split-VAE Split Variational AutoEncoder Introduction This repository contains and implemementation of a Split Variational AutoEncoder (SVAE). In a SVA

Andrea Asperti 2 Sep 02, 2022
Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available for research purposes.

Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available f

Yongrui Chen 5 Nov 10, 2022
Lightweight, Python library for fast and reproducible experimentation :microscope:

Steppy What is Steppy? Steppy is a lightweight, open-source, Python 3 library for fast and reproducible experimentation. Steppy lets data scientist fo

minerva.ml 134 Jul 10, 2022
The official PyTorch implementation of Curriculum by Smoothing (NeurIPS 2020, Spotlight).

Curriculum by Smoothing (NeurIPS 2020) The official PyTorch implementation of Curriculum by Smoothing (NeurIPS 2020, Spotlight). For any questions reg

PAIR Lab 36 Nov 23, 2022
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Sicheng Xu 833 Dec 28, 2022
Mini-hmc-jax - A simple implementation of Hamiltonian Monte Carlo in JAX

mini-hmc-jax This is a simple implementation of Hamiltonian Monte Carlo in JAX t

Martin Marek 6 Mar 03, 2022
Streamlit app demonstrating an image browser for the Udacity self-driving-car dataset with realtime object detection using YOLO.

Streamlit Demo: The Udacity Self-driving Car Image Browser This project demonstrates the Udacity self-driving-car dataset and YOLO object detection in

Streamlit 992 Jan 04, 2023
UMPNet: Universal Manipulation Policy Network for Articulated Objects

UMPNet: Universal Manipulation Policy Network for Articulated Objects Zhenjia Xu, Zhanpeng He, Shuran Song Columbia University Robotics and Automation

Columbia Artificial Intelligence and Robotics Lab 33 Dec 03, 2022
Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe

Traductor de señas Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe Requerimientos 🔧 Python 3.8 o inferior para evitar

Jahaziel Hernandez Hoyos 3 Nov 12, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
text_recognition_toolbox: The reimplementation of a series of classical scene text recognition papers with Pytorch in a uniform way.

text recognition toolbox 1. 项目介绍 该项目是基于pytorch深度学习框架,以统一的改写方式实现了以下6篇经典的文字识别论文,论文的详情如下。该项目会持续进行更新,欢迎大家提出问题以及对代码进行贡献。 模型 论文标题 发表年份 模型方法划分 CRNN 《An End-t

168 Dec 24, 2022
Intrusion Test Tool with Python

P3ntsT00L Uma ferramenta escrita em Python, feita para Teste de intrusão. Requisitos ter o python 3.9.8 instalado em sua máquina. ter a git instalada

josh washington 2 Dec 27, 2021
A lightweight library to compare different PyTorch implementations of the same network architecture.

TorchBug is a lightweight library designed to compare two PyTorch implementations of the same network architecture. It allows you to count, and compar

Arjun Krishnakumar 5 Jan 02, 2023
PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 20

Zhengqi Li 585 Jan 04, 2023
TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX

Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX Foolbox is a Python li

Bethge Lab 2.4k Dec 25, 2022
Sandbox for training deep learning networks

Deep learning networks This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (

Oleg Sémery 2.7k Jan 01, 2023
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

24 Dec 31, 2022
Async API for controlling Hue Lights

Hue API Async API for controlling Hue Lights Documentation: hue-api.nirantak.com Source: github.com/nirantak/hue-api Installation This is an async cli

Nirantak Raghav 4 Nov 16, 2022
Code for visualizing the loss landscape of neural nets

Visualizing the Loss Landscape of Neural Nets This repository contains the PyTorch code for the paper Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer

Tom Goldstein 2.2k Jan 09, 2023