A lightweight library to compare different PyTorch implementations of the same network architecture.

Related tags

Deep LearningTorchBug
Overview

TorchBug is a lightweight library designed to compare two PyTorch implementations of the same network architecture. It allows you to count, and compare, the different leaf modules (i.e., lowest level PyTorch modules, such as torch.nn.Conv2d) present both in the target model and the new model. These leaf modules are distinguished based on their attributes, so that an instance of Conv2d with a kernel_size of 3 and stride of 1 is counted separately from a Conv2d with kernel_size of 3 but stride 2.

Further, when the leaf modules match, the library also provides you the functionality to initialize both the models equivalently, by initializing the leaf modules with weights using seeds which are obtained from the hash of their attributes. TorchBug then lets you pass the same input through both the models, and compare their outputs, or the outputs of intermediate leaf modules, to help find where the new model implementaion deviates from the target model.

Setup | Usage | Docs | Examples

Setup

To install, simply clone the repository, cd into the TorchBug folder, and run the following command:

pip install .

Usage

To get started, check out demo.py.

Docs

Docstrings can be found for all the functions. Refer compare.py and model_summary.py for the main functions.

Examples

Summary of a model

Each row in the tables indicates a specific module type, along with a combination of its attributes, as shown in the columns.

  • The second row in the second table indicates, for example, that there are two instances of Conv2d with 6 in_channels and 6 out_channels in the Target Model. Each of these modules has 330 parameters.

Summary of a model

Comparison of leaf modules

TorchBug lets you compare the leaf modules present in both models, and shows you the missing/extraneous modules present in either.

Comparison of leaf modules

Comparison of leaf modules invoked in the forward pass

The comparison of leaf modules invoked in forward pass ensures that the registered leaf modules are indeed consumed in the forward function of the models.

Comparison of leaf modules

Comparison of outputs of all leaf modules

After instantiating the Target and New models equivalently, and passing the same data through both of them, the outputs of intermediate leaf modules (of the same types and attributes) are compared (by brute force).

  • The second row in the first table indicates, for example, that there are two instances of Conv2d with 6 in_channels and 6 out_channels in both the models, and their outputs match.

Module-wise comparison of models

Comparison of outputs of specific leaf modules only

TorchBug lets you mark specific leaf modules in the models, with names, and shows you whether the outputs of these marked modules match.

Comparison of outputs of marked modules

  • In the above example, a convolution and two linear layers in the New Model were marked with names "Second Convolution", "First Linear Layer", and "Second Linear Layer".
  • A convolution in the Target Model was marked with name "Second Convolution".
  • All the other leaf modules in the Target Model were marked using a convenience function, which set the names to a string describing the module.
Owner
Arjun Krishnakumar
Research Assistant (HiWi) | Master's in Computer Science @ University of Freiburg
Arjun Krishnakumar
Lightweight mmm - Lightweight (Bayesian) Media Mix Model

Lightweight (Bayesian) Media Mix Model This is not an official Google product. L

Google 342 Jan 03, 2023
Implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hashing by Maximizing Bit Entropy

Deep Unsupervised Image Hashing by Maximizing Bit Entropy This is the PyTorch implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hash

62 Dec 30, 2022
Discord Multi Tool that focuses on design and easy usage

Multi-Tool-v1.0 Discord Multi Tool that focuses on design and easy usage Delete webhook Block all friends Spam webhook Modify webhook Webhook info Tok

Lodi#0001 24 May 23, 2022
[CIKM 2019] Code and dataset for "Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction"

FiGNN for CTR prediction The code and data for our paper in CIKM2019: Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Predicti

Big Data and Multi-modal Computing Group, CRIPAC 75 Dec 30, 2022
Multi-robot collaborative exploration and mapping through Voronoi partition and DRL in unknown environment

Voronoi Multi_Robot Collaborate Exploration Introduction In the unknown environment, the cooperative exploration of multiple robots is completed by Vo

PeaceWord 6 Nov 22, 2022
A graph adversarial learning toolbox based on PyTorch and DGL.

GraphWar: Arms Race in Graph Adversarial Learning NOTE: GraphWar is still in the early stages and the API will likely continue to change. 🚀 Installat

Jintang Li 54 Jan 05, 2023
Unsupervised Representation Learning by Invariance Propagation

Unsupervised Learning by Invariance Propagation This repository is the official implementation of Unsupervised Learning by Invariance Propagation. Pre

FengWang 15 Jul 06, 2022
Bottleneck Transformers for Visual Recognition

Bottleneck Transformers for Visual Recognition Experiments Model Params (M) Acc (%) ResNet50 baseline (ref) 23.5M 93.62 BoTNet-50 18.8M 95.11% BoTNet-

Myeongjun Kim 236 Jan 03, 2023
Final term project for Bayesian Machine Learning Lecture (XAI-623)

Mixquality_AL Final Term Project For Bayesian Machine Learning Lecture (XAI-623) Youtube Link The presentation is given in YoutubeLink Problem Formula

JeongEun Park 3 Jan 18, 2022
Voice Conversion Using Speech-to-Speech Neuro-Style Transfer

This repo contains the official implementation of the VAE-GAN from the INTERSPEECH 2020 paper Voice Conversion Using Speech-to-Speech Neuro-Style Transfer.

Ehab AlBadawy 93 Jan 05, 2023
[NeurIPS2021] Code Release of Learning Transferable Perturbations

Learning Transferable Adversarial Perturbations This is an official release of the paper Learning Transferable Adversarial Perturbations. The code is

Krishna Kanth 17 Nov 11, 2022
Time Series Forecasting with Temporal Fusion Transformer in Pytorch

Forecasting with the Temporal Fusion Transformer Multi-horizon forecasting often contains a complex mix of inputs – including static (i.e. time-invari

Nicolás Fornasari 6 Jan 24, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR) This is the official implementation of our paper Personalized Tran

Yongchun Zhu 81 Dec 29, 2022
Google-drive-to-sqlite - Create a SQLite database containing metadata from Google Drive

google-drive-to-sqlite Create a SQLite database containing metadata from Google

Simon Willison 140 Dec 04, 2022
Pre-Training 3D Point Cloud Transformers with Masked Point Modeling

Point-BERT: Pre-Training 3D Point Cloud Transformers with Masked Point Modeling Created by Xumin Yu*, Lulu Tang*, Yongming Rao*, Tiejun Huang, Jie Zho

Lulu Tang 306 Jan 06, 2023
Learning based AI for playing multi-round Koi-Koi hanafuda card games. Have fun.

Koi-Koi AI Learning based AI for playing multi-round Koi-Koi hanafuda card games. Platform Python PyTorch PySimpleGUI (for the interface playing vs AI

Sanghai Guan 10 Nov 20, 2022
BRNet - code for Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss function

BRNet code for "Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss func

Yong Pi 2 Mar 09, 2022
Internship Assessment Task for BaggageAI.

BaggageAI Internship Task Problem Statement: You are given two sets of images:- background and threat objects. Background images are the background x-

Arya Shah 10 Nov 14, 2022
MMGeneration is a powerful toolkit for generative models, based on PyTorch and MMCV.

Documentation: https://mmgeneration.readthedocs.io/ Introduction English | 简体中文 MMGeneration is a powerful toolkit for generative models, especially f

OpenMMLab 1.3k Dec 29, 2022
[ICSE2020] MemLock: Memory Usage Guided Fuzzing

MemLock: Memory Usage Guided Fuzzing This repository provides the tool and the evaluation subjects for the paper "MemLock: Memory Usage Guided Fuzzing

Cheng Wen 54 Jan 07, 2023