Voice Conversion Using Speech-to-Speech Neuro-Style Transfer

Overview

Voice Conversion Using Speech-to-Speech Neuro-Style Transfer

This repo contains the official implementation of the VAE-GAN from the INTERSPEECH 2020 paper Voice Conversion Using Speech-to-Speech Neuro-Style Transfer.

Examples of generated audio using the Flickr8k Audio Corpus: https://ebadawy.github.io/post/speech_style_transfer. Note that these examples are a result of feeding audio reconstructions of this VAE-GAN to an implementation of WaveNet.

1. Data Preperation

Dataset file structure:

/path/to/database
├── spkr_1
│   ├── sample.wav
├── spkr_2
│   ├── sample.wav
│   ...
└── spkr_N
    ├── sample.wav
    ...
# The directory under each speaker cannot be nested.

Here is an example script for setting up data preparation from the Flickr8k Audio Corpus. The speakers of interest are the same as in the paper, but may be modified to other speakers if desirable.

2. Data Preprocessing

The prepared dataset is organised into a train/eval/test split, the audio is preprocessed and melspectrograms are computed.

python preprocess.py --dataset [path/to/dataset] --test-size [float] --eval-size [float]

3. Training

The VAE-GAN model uses the melspectrograms to learn style transfer between two speakers.

python train.py --model_name [name of the model] --dataset [path/to/dataset]

3.1. Visualization

By default, the code plots a batch of input and output melspectrograms every epoch. You may add --plot-interval -1 to the above command to disable it. Alternatively you may add --plot-interval 20 to plot every 20 epochs.

3.2. Saving Models

By default, models are saved every epoch. With smaller datasets than Flickr8k it may be more appropriate to save less frequently by adding --checkpoint_interval 20 for 20 epochs.

3.3. Epochs

The max number of epochs may be set with --n_epochs. For smaller datasets, you may want to increase this to more than the default 100. To load a pretrained model you can use --epoch and set it to the epoch number of the saved model.

3.4. Pretrained Model

You can access pretrained model files here. By downloading and storing them in a directory src/saved_models/pretrained, you may call it for training or inference with:

--model_name pretrained --epoch 99

Note that for inference the discriminator files D1 and D2 are not required (meanwhile for training further they are). Also here, G1 refers to the decoding generator for speaker 1 (female) and G2 for speaker 2 (male).

4. Inference

The trained VAE-GAN is used for inference on a specified audio file. It works by; sliding a window over a full melspectrogram, locally inferring melspectrogram subsamples, and averaging the overlap. The script then uses Griffin-Lim to reconstruct audio from the generated melspectrogram.

python inference.py --model_name [name of the model] --epoch [epoch number] --trg_id [id of target generator] --wav [path/to/source_audio.wav]

For achieving high quality results like the paper you can feed the reconstructed audio to trained vocoders such as WaveNet. An example pipeline of using this model with wavenet can be found here.

4.1. Directory Input

Instead of a single .wav as input you may specify a whole directory of .wav files by using --wavdir instead of --wav.

4.2. Visualization

By default, plotting input and output melspectrograms is enabled. This is useful for a visual comparison between trained models. To disable set --plot -1

4.3. Reconstructive Evaluation

Alongside the process of generating, components for reconstruction and cyclic reconstruction may be enabled by specifying the generator id of the source audio --src_id [id of source generator].

When set, SSIM metrics for reconstructed melspectrograms and cyclically reconstructed melspectrograms are computed and printed at the end of inference.

This is an extra feature to help with comparing the reconstructive capabilities of different models. The higher the SSIM, the higher quality the reconstruction.

References

Citation

If you find this code useful please cite us in your work:

@inproceedings{AlBadawy2020,
  author={Ehab A. AlBadawy and Siwei Lyu},
  title={{Voice Conversion Using Speech-to-Speech Neuro-Style Transfer}},
  year=2020,
  booktitle={Proc. Interspeech 2020},
  pages={4726--4730},
  doi={10.21437/Interspeech.2020-3056},
  url={http://dx.doi.org/10.21437/Interspeech.2020-3056}
}

TODO:

  • Rewrite preprocess.py to handle:
    • multi-process feature extraction
    • display error messages for failed cases
  • Create:
    • Notebook for data visualisation
  • Want to add something else? Please feel free to submit a PR with your changes or open an issue for that.
Owner
Ehab AlBadawy
Ehab AlBadawy
The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization".

Kernelized-HRM Jiashuo Liu, Zheyuan Hu The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization"[1]. This repo contains the cod

Liu Jiashuo 8 Nov 20, 2022
Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification

This repo holds the codes of our paper: Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification, which is ac

Feng Gao 17 Dec 28, 2022
DrQ-v2: Improved Data-Augmented Reinforcement Learning

DrQ-v2: Improved Data-Augmented RL Agent Method DrQ-v2 is a model-free off-policy algorithm for image-based continuous control. DrQ-v2 builds on DrQ,

Facebook Research 234 Jan 01, 2023
My personal code and solution to the Synacor Challenge from 2012 OSCON.

Synacor OSCON Challenge Solution (2012) This repository contains my code and solution to solve the Synacor OSCON 2012 Challenge. If you are interested

2 Mar 20, 2022
An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

rydercalmdown 24 Dec 09, 2022
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021)

OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021) This is an PyTorch implementation of OpenMatc

Vision and Learning Group 38 Dec 26, 2022
(Arxiv 2021) NeRF--: Neural Radiance Fields Without Known Camera Parameters

NeRF--: Neural Radiance Fields Without Known Camera Parameters Project Page | Arxiv | Colab Notebook | Data Zirui Wang¹, Shangzhe Wu², Weidi Xie², Min

Active Vision Laboratory 411 Dec 26, 2022
Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition

Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition How Fast Compare to Other Zero-Shot NAS Proxies on CIFAR-10/100 Pre-trained Model

190 Dec 29, 2022
ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

ClevrTex This repository contains dataset generation code for ClevrTex benchmark from paper: ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi

Laurynas Karazija 26 Dec 21, 2022
Rank 1st in the public leaderboard of ScanRefer (2021-03-18)

InstanceRefer InstanceRefer: Cooperative Holistic Understanding for Visual Grounding on Point Clouds through Instance Multi-level Contextual Referring

63 Dec 07, 2022
Voxel-based Network for Shape Completion by Leveraging Edge Generation (ICCV 2021, oral)

Voxel-based Network for Shape Completion by Leveraging Edge Generation This is the PyTorch implementation for the paper "Voxel-based Network for Shape

10 Dec 04, 2022
Self-Guided Contrastive Learning for BERT Sentence Representations

Self-Guided Contrastive Learning for BERT Sentence Representations This repository is dedicated for releasing the implementation of the models utilize

Taeuk Kim 16 Dec 04, 2022
particle tracking model, works with the ROMS output file(qck.nc, his.nc)

particle-tracking-model-for-ROMS particle tracking model, works with the ROMS output file(qck.nc, his.nc) description this is a 2-dimensional particle

xusheng 1 Jan 11, 2022
Official Implementation of "Transformers Can Do Bayesian Inference"

Official Code for the Paper "Transformers Can Do Bayesian Inference" We train Transformers to do Bayesian Prediction on novel datasets for a large var

AutoML-Freiburg-Hannover 103 Dec 25, 2022
PyTorch Implementations for DeeplabV3 and PSPNet

Pytorch-segmentation-toolbox DOC Pytorch code for semantic segmentation. This is a minimal code to run PSPnet and Deeplabv3 on Cityscape dataset. Shor

Zilong Huang 746 Dec 15, 2022
Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"

Language Generation with Recurrent Generative Adversarial Networks without Pre-training Code for training and evaluation of the model from "Language G

Amir Bar 253 Sep 14, 2022
Evaluation and Benchmarking of Speech Super-resolution Methods

Speech Super-resolution Evaluation and Benchmarking What this repo do: A toolbox for the evaluation of speech super-resolution algorithms. Unify the e

Haohe Liu (刘濠赫) 84 Dec 20, 2022
Pmapper is a super-resolution and deconvolution toolkit for python 3.6+

pmapper pmapper is a super-resolution and deconvolution toolkit for python 3.6+. PMAP stands for Poisson Maximum A-Posteriori, a highly flexible and a

NASA Jet Propulsion Laboratory 8 Nov 06, 2022
Faster RCNN with PyTorch

Faster RCNN with PyTorch Note: I re-implemented faster rcnn in this project when I started learning PyTorch. Then I use PyTorch in all of my projects.

Long Chen 1.6k Dec 23, 2022
ParaGen is a PyTorch deep learning framework for parallel sequence generation

ParaGen is a PyTorch deep learning framework for parallel sequence generation. Apart from sequence generation, ParaGen also enhances various NLP tasks, including sequence-level classification, extrac

Bytedance Inc. 169 Dec 22, 2022