Faster RCNN with PyTorch

Overview

Faster RCNN with PyTorch

Note: I re-implemented faster rcnn in this project when I started learning PyTorch. Then I use PyTorch in all of my projects. I still remember it costed one week for me to figure out how to build cuda code as a pytorch layer :). But actually this is not a good implementation and I didn't achieve the same mAP as the original caffe code.

This project is no longer maintained and may not compatible with the newest pytorch (after 0.4.0). So I suggest:

  • You can still read and study this code if you want to re-implement faster rcnn by yourself;
  • You can use the better PyTorch implementation by ruotianluo or Detectron.pytorch if you want to train faster rcnn with your own data;

This is a PyTorch implementation of Faster RCNN. This project is mainly based on py-faster-rcnn and TFFRCNN.

For details about R-CNN please refer to the paper Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks by Shaoqing Ren, Kaiming He, Ross Girshick, Jian Sun.

Progress

  • Forward for detecting
  • RoI Pooling layer with C extensions on CPU (only forward)
  • RoI Pooling layer on GPU (forward and backward)
  • Training on VOC2007
  • TensroBoard support
  • Evaluation

Installation and demo

  1. Install the requirements (you can use pip or Anaconda):

    conda install pip pyyaml sympy h5py cython numpy scipy
    conda install -c menpo opencv3
    pip install easydict
    
  2. Clone the Faster R-CNN repository

    git clone [email protected]:longcw/faster_rcnn_pytorch.git
  3. Build the Cython modules for nms and the roi_pooling layer

    cd faster_rcnn_pytorch/faster_rcnn
    ./make.sh
  4. Download the trained model VGGnet_fast_rcnn_iter_70000.h5 and set the model path in demo.py

  5. Run demo python demo.py

Training on Pascal VOC 2007

Follow this project (TFFRCNN) to download and prepare the training, validation, test data and the VGG16 model pre-trained on ImageNet.

Since the program loading the data in faster_rcnn_pytorch/data by default, you can set the data path as following.

cd faster_rcnn_pytorch
mkdir data
cd data
ln -s $VOCdevkit VOCdevkit2007

Then you can set some hyper-parameters in train.py and training parameters in the .yml file.

Now I got a 0.661 mAP on VOC07 while the origin paper got a 0.699 mAP. You may need to tune the loss function defined in faster_rcnn/faster_rcnn.py by yourself.

Training with TensorBoard

With the aid of Crayon, we can access the visualisation power of TensorBoard for any deep learning framework.

To use the TensorBoard, install Crayon (https://github.com/torrvision/crayon) and set use_tensorboard = True in faster_rcnn/train.py.

Evaluation

Set the path of the trained model in test.py.

cd faster_rcnn_pytorch
mkdir output
python test.py

License: MIT license (MIT)

Owner
Long Chen
Computer Vision
Long Chen
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
Deal or No Deal? End-to-End Learning for Negotiation Dialogues

Introduction This is a PyTorch implementation of the following research papers: (1) Hierarchical Text Generation and Planning for Strategic Dialogue (

Facebook Research 1.4k Dec 29, 2022
PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment

logit-adj-pytorch PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment This code implements the paper: Long-tail Learning via

Chamuditha Jayanga 53 Dec 23, 2022
Deep functional residue identification

DeepFRI Deep functional residue identification Citing @article {Gligorijevic2019, author = {Gligorijevic, Vladimir and Renfrew, P. Douglas and Koscio

Flatiron Institute 156 Dec 25, 2022
Code for the paper "M2m: Imbalanced Classification via Major-to-minor Translation" (CVPR 2020)

M2m: Imbalanced Classification via Major-to-minor Translation This repository contains code for the paper "M2m: Imbalanced Classification via Major-to

79 Oct 13, 2022
DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency

[CVPR19] DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency (Oral paper) Authors: Kuang-Jui Hsu, Yen-Yu Lin, Yung-Yu Chuang PDF:

Kuang-Jui Hsu 139 Dec 22, 2022
Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On

UPMT Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On See main.py as an example: from model import PopM

7 Sep 01, 2022
GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape Completion

GarmentNets This repository contains the source code for the paper GarmentNets: Category-Level Pose Estimation for Garments via Canonical Space Shape

Columbia Artificial Intelligence and Robotics Lab 43 Nov 21, 2022
SWA Object Detection

SWA Object Detection This project hosts the scripts for training SWA object detectors, as presented in our paper: @article{zhang2020swa, title={SWA

237 Nov 28, 2022
Implementation of the Transformer variant proposed in "Transformer Quality in Linear Time"

FLASH - Pytorch Implementation of the Transformer variant proposed in the paper Transformer Quality in Linear Time Install $ pip install FLASH-pytorch

Phil Wang 209 Dec 28, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance This is the codebase for video-based human motion reconstruction in human-mot

Jiachen Xu 5 Jul 14, 2022
Ranger - a synergistic optimizer using RAdam (Rectified Adam), Gradient Centralization and LookAhead in one codebase

Ranger-Deep-Learning-Optimizer Ranger - a synergistic optimizer combining RAdam (Rectified Adam) and LookAhead, and now GC (gradient centralization) i

Less Wright 1.1k Dec 21, 2022
Constructing Neural Network-Based Models for Simulating Dynamical Systems

Constructing Neural Network-Based Models for Simulating Dynamical Systems Note this repo is work in progress prior to reviewing This is a companion re

Christian Møldrup Legaard 21 Nov 25, 2022
Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch

SRDenseNet-pytorch Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch (http://openaccess.thecvf.com/content_ICC

wxy 114 Nov 26, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

64 Jan 05, 2023
Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Demetri Pananos 9 Oct 04, 2022
Official Repo for ICCV2021 Paper: Learning to Regress Bodies from Images using Differentiable Semantic Rendering

[ICCV2021] Learning to Regress Bodies from Images using Differentiable Semantic Rendering Getting Started DSR has been implemented and tested on Ubunt

Sai Kumar Dwivedi 83 Nov 27, 2022
Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow.

Generative Models Collection of generative models, e.g. GAN, VAE in Pytorch and Tensorflow. Also present here are RBM and Helmholtz Machine. Note: Gen

Agustinus Kristiadi 7k Jan 02, 2023
Code for "Learning Graph Cellular Automata"

Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro

Daniele Grattarola 37 Oct 26, 2022