ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin et al., 2020).

Overview

ReConsider

ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin et al., 2020).

The technical details are described in:

@inproceedings{iyer2020reconsider,
 title={RECONSIDER: Re-Ranking using Span-Focused Cross-Attention for Open Domain Question Answering},
 author={Iyer, Srinivasan and Min, Sewon and Mehdad, Yashar and Yih, Wen-tau},
 booktitle={NAACL},
 year={2021}
}

https://arxiv.org/abs/2010.10757

LICENSE

The majority of ReConsider is licensed under CC-BY-NC, however portions of the project are available under separate license terms: huggingface transformers and HotpotQA Utils are licensed under the Apache 2.0 license.

Re-producing results from the paper

The ReConsider models in the paper are trained on the top-100 predictions from the DPR Retriever + Reader model (Karpukhin et al., 2020) on four datasets: NaturalQuestions, TriviaQA, Trec, and WebQ.

We outline all the steps here for NaturalQuestions, but the same steps can be followed for the other datasets.

  1. Environment Setup
pip install -r requirements.txt
  1. [optional] Get the top-100 retrieved passages for each question using the best DPR retriever model for the NQ train, dev, and test sets. We provide these in our repo, but alternatively, you can obtain them by training the DPR retriever from scratch (from here). You can skip this entire step if you are only running ReConsider.
wget http://dl.fbaipublicfiles.com/reconsider/dpr_retriever_outputs/{nq|webq|trec|tqa}-{train|dev|test}-multi.json
  1. [optional] Get the top-100 predictions from the DPR reader (Karpukhin et al., 2020) executed on the output of the DPR retriever, on the NQ train, dev, and test sets. We provide these in our repo, but alternatively, you can obtain them by training the DPR reader from scratch (from here). You can skip this entire step if you are only running ReConsider.
wget http://dl.fbaipublicfiles.com/reconsider/dpr_reader_outputs/ttttt_{train|dev|test}.{nq|tqa|trec|webq}.{bbase|blarge}.output.nopp.title.json
  1. [optional] Convert DPR reader predictions to the marked-passage format required by ReConsider.
python prepare_marked_dataset.py --answer_json ttttt__train.{nq|tqa|trec|webq}.{bbase|blarge}.output.nopp.title.json --orig_json {nq|webq|trec|tqa}-train-multi.json --out_json paraphrase_selection_train.{nq|tqa|trec|webq}.{bbase|blarge}.100.qp_mp.nopp.title.json --train_M 100

python prepare_marked_dataset.py --answer_json ttttt_dev.{nq|tqa|trec|webq}.{bbase|blarge}.output.nopp.title.json --orig_json {nq|webq|trec|tqa}-dev-multi.json --out_json paraphrase_selection_dev.{nq|tqa|trec|webq}.{bbase|blarge}.5.qp_mp.nopp.title.json --dev --test_M 5

python prepare_marked_dataset.py --answer_json ttttt_test.{nq|tqa|trec|webq}.{bbase|blarge}.output.nopp.title.json --orig_json {nq|webq|trec|tqa}-test-multi.json --out_json paraphrase_selection_test.{nq|tqa|trec|webq}.{bbase|blarge}.5.qp_mp.nopp.title.json --dev --test_M 5

We also provide these files, so that you don't need to execute this command. You can directly download the output files using:

wget http://dl.fbaipublicfiles.com/reconsider/reconsider_inputs/paraphrase_selection_{train|dev|test}.{nq|tqa|trec|webq}.{bbase|blarge}.qp_mp.nopp.title.json
  1. Train ReConsider Models For Base models:
dset={nq|tqa|trec|webq}
python main.py --do_train --output_dir ps.$dset.bbase --train_file paraphrase_selection_train.$dset.bbase.qp_mp.nopp.title.json --predict_file paraphrase_selection_dev.$dset.bbase.qp_mp.nopp.title.json --train_batch_size 16 --predict_batch_size 144 --eval_period 500 --threads 80 --pad_question --max_question_length 0 --max_passage_length 240 --train_M 30 --test_M 5

For Large models:

dset={nq|tqa|trec|webq}
python main.py --do_train --output_dir ps.$dset.bbase --train_file paraphrase_selection_train.$dset.bbase.qp_mp.nopp.title.json --predict_file paraphrase_selection_dev.$dset.bbase.qp_mp.nopp.title.json --train_batch_size 16 --predict_batch_size 144 --eval_period 500 --threads 80 --pad_question --max_question_length 0 --max_passage_length 240 --train_M 10 --test_M 5 --bert_name bert-large-uncased

Note: If training on Trec or Webq, initialize the model with the model trained on NQ of the corresponding size by adding this parameter: --checkpoint $model_nq_{bbase|blarge}. You can either train this NQ model using the commands above, or directly download it as described below:

We also provide our pre-trained models for download, using this script:

python download_reconsider_models.py --model {nq|trec|tqa|webq}_{bbase|blarse}
  1. Predict on the test set using ReConsider Models
python main.py --do_predict --output_dir /tmp/ --predict_file paraphrase_selection_test.{nq|trec|webq|tqa}.{bbase|blarge}.qp_mp.nopp.title.json  --checkpoint {path_to_model} --predict_batch_size 72 --threads 80 --n_paragraphs 100  --verbose --prefix test_  --pad_question --max_question_length 0 --max_passage_length 240 --predict_batch_size 72 --test_M 5 --bert_name {bert-base-uncased|bert-large-uncased}
Owner
Facebook Research
Facebook Research
YOLOX-Paddle - A reproduction of YOLOX by PaddlePaddle

YOLOX-Paddle A reproduction of YOLOX by PaddlePaddle 数据集准备 下载COCO数据集,准备为如下路径 /ho

QuanHao Guo 6 Dec 18, 2022
Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research

Welcome to AirSim AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open

Microsoft 13.8k Jan 05, 2023
A non-linear, non-parametric Machine Learning method capable of modeling complex datasets

Fast Symbolic Regression Symbolic Regression is a non-linear, non-parametric Machine Learning method capable of modeling complex data sets. fastsr aim

VAMSHI CHOWDARY 3 Jun 22, 2022
Yolo object detection - Yolo object detection with python

How to run download required files make build_image make download Docker versio

3 Jan 26, 2022
Official PyTorch implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation

U-GAT-IT — Official PyTorch Implementation : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Imag

Hyeonwoo Kang 2.4k Jan 04, 2023
Segmentation Training Pipeline

Segmentation Training Pipeline This package is a part of Musket ML framework. Reasons to use Segmentation Pipeline Segmentation Pipeline was developed

Musket ML 52 Dec 12, 2022
Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022)

Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022) By Shilong Zhang*, Zhuoran Yu*, Liyang Liu*, Xinjiang Wang, Aojun Zhou,

Shilong Zhang 129 Dec 24, 2022
ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

ViViT is a collection of numerical tricks to efficiently access curvature from the generalized Gauss-Newton (GGN) matrix based on its low-rank structure. Provided functionality includes computing

Felix Dangel 12 Dec 08, 2022
Magic tool for managing internet connection in local network by @zalexdev

Megacut ✂️ A new powerful Python3 tool for managing internet on a local network Installation git clone https://github.com/stryker-project/megacut cd m

Stryker 12 Dec 15, 2022
This is my codes that can visualize the psnr image in testing videos.

CVPR2018-Baseline-PSNRplot This is my codes that can visualize the psnr image in testing videos. Future Frame Prediction for Anomaly Detection – A New

Wenhao Yang 12 May 29, 2021
A pytorch implementation of Detectron. Both training from scratch and inferring directly from pretrained Detectron weights are available.

Use this instead: https://github.com/facebookresearch/maskrcnn-benchmark A Pytorch Implementation of Detectron Example output of e2e_mask_rcnn-R-101-F

Roy 2.8k Dec 29, 2022
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency

This repository contains the implementation for the paper: No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consiste

Alireza Golestaneh 75 Dec 30, 2022
Arabic Car License Recognition. A solution to the kaggle competition Machathon 3.0.

Transformers Arabic licence plate recognition 🚗 Solution to the kaggle competition Machathon 3.0. Ranked in the top 6️⃣ at the final evaluation phase

Noran Hany 17 Dec 04, 2022
Python scripts using the Mediapipe models for Halloween.

Mediapipe-Halloween-Examples Python scripts using the Mediapipe models for Halloween. WHY Mainly for fun. But this repository also includes useful exa

Ibai Gorordo 23 Jan 06, 2023
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular

vanint 18 Dec 17, 2022
A certifiable defense against adversarial examples by training neural networks to be provably robust

DiffAI v3 DiffAI is a system for training neural networks to be provably robust and for proving that they are robust. The system was developed for the

SRI Lab, ETH Zurich 202 Dec 13, 2022
一些经典的CTR算法的复现; LR, FM, FFM, AFM, DeepFM,xDeepFM, PNN, DCN, DCNv2, DIFM, AutoInt, FiBiNet,AFN,ONN,DIN, DIEN ... (pytorch, tf2.0)

CTR Algorithm 根据论文, 博客, 知乎等方式学习一些CTR相关的算法 理解原理并自己动手来实现一遍 pytorch & tf2.0 保持一颗学徒的心! Schedule Model pytorch tensorflow2.0 paper LR ✔️ ✔️ \ FM ✔️ ✔️ Fac

luo han 149 Dec 20, 2022
"Learning Free Gait Transition for Quadruped Robots vis Phase-Guided Controller"

PhaseGuidedControl The current version is developed based on the old version of RaiSim series, and possibly requires further modification. It will be

X-Mechanics 12 Oct 21, 2022
Mini Software that give reminder to drink water as per your weight.

Water Notification Desktop Python The Mini Software built in Python (tkinter) that will remind you to drink water on specific time span based on your

Om Jogani 5 Dec 16, 2022
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

27 Dec 01, 2022