NL-Augmenter 🦎 → 🐍 A Collaborative Repository of Natural Language Transformations

Overview

Checks Forks Issues Pull requests Contributors License

NL-Augmenter 🦎 🐍

The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformations augment text datasets in diverse ways, including: randomizing names and numbers, changing style/syntax, paraphrasing, KB-based paraphrasing ... and whatever creative augmentation you contribute. We invite submissions of transformations to this framework by way of GitHub pull request, through August 31, 2021. All submitters of accepted transformations (and filters) will be included as co-authors on a paper announcing this framework.

The framework organizers can be contacted at [email protected].

Submission timeline

Due date Description
A̶u̶g̶u̶s̶t̶ 3̶1̶, 2̶0̶2̶1̶ P̶u̶l̶l̶ r̶e̶q̶u̶e̶s̶t̶ m̶u̶s̶t̶ b̶e̶ o̶p̶e̶n̶e̶d̶ t̶o̶ b̶e̶ e̶l̶i̶g̶i̶b̶l̶e̶ f̶o̶r̶ i̶n̶c̶l̶u̶s̶i̶o̶n̶ i̶n̶ t̶h̶e̶ f̶r̶a̶m̶e̶w̶o̶r̶k̶ a̶n̶d̶ a̶s̶s̶o̶c̶i̶a̶t̶e̶d̶ p̶a̶p̶e̶r̶
September 2̶2̶, 30 2021 Review process for pull request above must be complete

A transformation can be revised between the pull request submission and pull request merge deadlines. We will provide reviewer feedback to help with the revisions.

The transformations which are already accepted to NL-Augmenter are summarized in the transformations folder. Transformations undergoing review can be seen as pull requests.

Table of contents

Colab notebook

Open In Colab To quickly see transformations and filters in action, run through our colab notebook.

Some Ideas for Transformations

If you need inspiration for what transformations to implement, check out https://github.com/GEM-benchmark/NL-Augmenter/issues/75, where some ideas and previous papers are discussed. So far, contributions have focused on morphological inflections, character level changes, and random noise. The best new pull requests will be dissimilar from these existing contributions.

Installation

Requirements

  • Python 3.7

Instructions

# When creating a new transformation, replace this with your forked repository (see below)
git clone https://github.com/GEM-benchmark/NL-Augmenter.git
cd NL-Augmenter
python setup.py sdist
pip install -e .
pip install https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.0.0/en_core_web_sm-3.0.0.tar.gz

How do I create a transformation?

Setup

First, fork the repository in GitHub! 🍴

fork button

Your fork will have its own location, which we will call PATH_TO_YOUR_FORK. Next, clone the forked repository and create a branch for your transformation, which here we will call my_awesome_transformation:

git clone $PATH_TO_YOUR_FORK
cd NL-Augmenter
git checkout -b my_awesome_transformation

We will base our transformation on an existing example. Create a new transformation directory by copying over an existing transformation. You can choose to copy from other transformation directories depending on the task you wish to create a transformation for. Check some of the existing pull requests and merged transformations first to avoid duplicating efforts or creating transformations too similar to previous ones.

cd transformations/
cp -r butter_fingers_perturbation my_awesome_transformation
cd my_awesome_transformation

Creating a transformation

  1. In the file transformation.py, rename the class ButterFingersPerturbation to MyAwesomeTransformation and choose one of the interfaces from the interfaces/ folder. See the full list of options here.
  2. Now put all your creativity in implementing the generate method. If you intend to use external libraries, add them with their version numbers in requirements.txt
  3. Update my_awesome_transformation/README.md to describe your transformation.

Testing and evaluating (Optional)

Once you are done, add at least 5 example pairs as test cases in the file test.json so that no one breaks your code inadvertently.

Once the transformation is ready, test it:

pytest -s --t=my_awesome_transformation

If you would like to evaluate your transformation against a common 🤗 HuggingFace model, we encourage you to check evaluation

Code Styling To standardized the code we use the black code formatter which will run at the time of pre-commit. To use the pre-commit hook, install pre-commit with pip install pre-commit (should already be installed if you followed the above instructions). Then run pre-commit install to install the hook. On future commits, you should see the black code formatter is run on all python files you've staged for commit.

Submitting

Once the tests pass and you are happy with the transformation, submit them for review. First, commit and push your changes:

git add transformations/my_awesome_transformation/*
git commit -m "Added my_awesome_transformation"
git push --set-upstream origin my_awesome_transformation

Finally, submit a pull request. The last git push command prints a URL that can be copied into a browser to initiate such a pull request. Alternatively, you can do so from the GitHub website.

pull request button

Congratulations, you've submitted a transformation to NL-Augmenter!

How do I create a filter?

We also accept pull-requests for creating filters which identify interesting subpopulations of a dataset. The process to add a new filter is just the same as above. All filter implementations require implementing .filter instead of .generate and need to be placed in the filters folder. So, just the way transformations can transform examples of text, filters can identify whether an example follows some pattern of text! The only difference is that while transformations return another example of the same input format, filters simply return True or False! For step-by-step instructions, follow these steps.

BIG-Bench 🪑

If you are interested in NL-Augmenter, you may also be interested in the BIG-bench large scale collaborative benchmark for language models.

Most Creative Implementations 🏆

After all pull-requests have been merged, 3 of the most creative implementations would be selected and featured on this README page and on the NL-Augmenter webpage.

License

Some transformations include components released under a different (permissive, open source) license. For license details, refer to the README.md and any license files in the transformations's or filter's directory.

Pretrained Pytorch face detection (MTCNN) and recognition (InceptionResnet) models

Face Recognition Using Pytorch Python 3.7 3.6 3.5 Status This is a repository for Inception Resnet (V1) models in pytorch, pretrained on VGGFace2 and

Tim Esler 3.3k Jan 04, 2023
Deeplab-resnet-101 in Pytorch with Jaccard loss

Deeplab-resnet-101 Pytorch with Lovász hinge loss Train deeplab-resnet-101 with binary Jaccard loss surrogate, the Lovász hinge, as described in http:

Maxim Berman 95 Apr 15, 2022
A PyTorch library and evaluation platform for end-to-end compression research

CompressAI CompressAI (compress-ay) is a PyTorch library and evaluation platform for end-to-end compression research. CompressAI currently provides: c

InterDigital 680 Jan 06, 2023
这是一个facenet-pytorch的库,可以用于训练自己的人脸识别模型。

Facenet:人脸识别模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 预测步骤 How2predict 训练步骤 How2train 参考资料 Reference 性能情况 训练数据

Bubbliiiing 210 Jan 06, 2023
Keras Model Implementation Walkthrough

Keras Model Implementation Walkthrough

Luke Wood 17 Sep 27, 2022
code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Shiqi Yang 84 Dec 26, 2022
領域を指定し、キーを入力することで画像を保存するツールです。クラス分類用のデータセット作成を想定しています。

image-capture-class-annotation 領域を指定し、キーを入力することで画像を保存するツールです。 クラス分類用のデータセット作成を想定しています。 Requirement OpenCV 3.4.2 or later Usage 実行方法は以下です。 起動後はマウスクリック4

KazuhitoTakahashi 5 May 28, 2021
Space-invaders - Simple Game created using Python & PyGame, as my Beginner Python Project

Space Invaders This is a simple SPACE INVADER game create using PYGAME whihc hav

Gaurav Pandey 2 Jan 08, 2022
Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The original code is written in keras.

CasRel-pytorch-reimplement Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The o

longlongman 170 Dec 01, 2022
A Partition Filter Network for Joint Entity and Relation Extraction EMNLP 2021

EMNLP 2021 - A Partition Filter Network for Joint Entity and Relation Extraction

zhy 127 Jan 04, 2023
PyTorch and Tensorflow functional model definitions

functional-zoo Model definitions and pretrained weights for PyTorch and Tensorflow PyTorch, unlike lua torch, has autograd in it's core, so using modu

Sergey Zagoruyko 590 Dec 22, 2022
Apply AnimeGAN-v2 across frames of a video clip

title emoji colorFrom colorTo sdk app_file pinned AnimeGAN-v2 For Videos 🔥 blue red gradio app.py false AnimeGAN-v2 For Videos Apply AnimeGAN-v2 acro

Nathan Raw 36 Oct 18, 2022
Torch code for our CVPR 2018 paper "Residual Dense Network for Image Super-Resolution" (Spotlight)

Residual Dense Network for Image Super-Resolution This repository is for RDN introduced in the following paper Yulun Zhang, Yapeng Tian, Yu Kong, Bine

Yulun Zhang 494 Dec 30, 2022
Make differentially private training of transformers easy for everyone

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

Ramón Casero 1 Jan 07, 2022
🚀 PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)"

PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)" Unofficial PyTorch Implementation of Progressi

Vitaliy Hramchenko 58 Dec 19, 2022
Distributionally robust neural networks for group shifts

Distributionally Robust Neural Networks for Group Shifts: On the Importance of Regularization for Worst-Case Generalization This code implements the g

151 Dec 25, 2022
An adaptive hierarchical energy management strategy for hybrid electric vehicles

An adaptive hierarchical energy management strategy This project contains the source code of an adaptive hierarchical EMS combining heuristic equivale

19 Dec 13, 2022