PyTorch wrappers for using your model in audacity!

Overview

audacitorch

This package contains utilities for prepping PyTorch audio models for use in Audacity. More specifically, it provides abstract classes for you to wrap your waveform-to-waveform and waveform-to-labels models (see the Deep Learning for Audacity website to learn more about deep learning models for audacity).

Table of Contents


img

Download Audacity with Deep Learning

Our work has not yet been merged to the main build of Audacity, though it will be soon. You can keep track of its progress by viewing our pull request. In the meantime, you can download an alpha version of Audacity + Deep Learning here.

Installing

You can install audacitorch using pip:

pip install -e "git+https://github.com/hugofloresgarcia/audacitorch.git#egg=audacitorch"

Contributing Models to Audacity

Supported Torch versions

audacitorch requires for your model to be able to run in Torch 1.9.0, as that's what the Audacity torchscript interpreter uses.

Deep Learning Effect and Analyzer

Audacity is equipped with a wrapper framework for deep learning models written in PyTorch. Audacity contains two deep learning tools: Deep Learning Effect and Deep Learning Analyzer.
Deep Learning Effect performs waveform to waveform processing, and is useful for audio-in-audio-out tasks (such as source separation, voice conversion, style transfer, amplifier emulation, etc.), while Deep Learning Analyzer performs waveform to labels processing, and is useful for annotation tasks (such as sound event detection, musical instrument recognition, automatic speech recognition, etc.). audacitorch contains two abstract classes for serializing two types of models: waveform-to-waveform and waveform-to-labels. The classes are WaveformToWaveformBase, and WaveformToLabelsBase, respectively.

Choosing an Effect Type

Waveform to Waveform models

As shown in the effect diagram, Waveform-to-waveform models receive a single multichannel audio track as input, and may write to a variable number of new audio tracks as output.

Example models for waveform-to-waveform effects include source separation, neural upsampling, guitar amplifier emulation, generative models, etc. Output tensors for waveform-to-waveform models must be multichannel waveform tensors with shape (num_output_channels, num_samples). For every audio waveform in the output tensor, a new audio track is created in the Audacity project.

Waveform to Labels models

As shown in the effect diagram, Waveform-to-labels models receive a single multichannel audio track as input, and may write to an output label track as output. The waveform-to-labels effect can be used for many audio analysis applications, such as voice activity detection, sound event detection, musical instrument recognition, automatic speech recognition, etc. The output for waveform-to-labels models must be a tuple of two tensors. The first tensor corresponds to the class indexes for each label present in the waveform, shape (num_timesteps,). The second tensor must contain timestamps with start and stop times for each label, shape (num_timesteps, 2).

What If My Model Uses a Spectrogram as Input/Output?

If your model uses a spectrogram as input/output, you'll need to wrap your forward pass with some torchscript-compatible preprocessing/postprocessing. We recommend using torchaudio, writing your own preprocessing transforms in their own nn.Module, or writing your PyTorch-only preprocessing and placing it in WaveformToWaveform.do_forward_pass or WaveformToLabels.do_forward_pass. See the compatibility section for more info.

Model Metadata

Certain details about the model, such as its sample rate, tool type (e.g. waveform-to-waveform or waveform-to-labels), list of labels, etc. must be provided by the model contributor in a separate metadata.json file. In order to help users choose the correct model for their required task, model contributors are asked to provide a short and long description of the model, the target domain of the model (e.g. speech, music, environmental, etc.), as well as a list of tags or keywords as part of the metadata. See here for an example metadata dictionary.

Metadata Spec

required fields:

  • sample_rate (int)
    • range (0, 396000)
    • Model sample rate. Input tracks will be resampled to this value.
  • domains (List[str])
    • List of data domains for the model. The list should contain any of the following strings (any others will be ignored): ["music", "speech", "environmental", "other"]
  • short_description(str)
    • max 60 chars
    • short description of the model. should contain a brief message with the model's purpose, e.g. "Use me for separating vocals from the background!".
  • long_description (str)
    • max 280 chars
    • long description of the model. Shown in the detailed view of the model UI.
  • tags (List[str])
    • list of tags (to be shown in the detailed view)
    • each tag should be 15 characters max
    • max 5 tags per model.
  • labels (List[str)
    • output labels for the model. Depending on the effect type, this field means different things
    • waveform-to-waveform
      • name of each output source (e.g. drums, bass, vocal). To create the track name for each output source, each one of the labels will be appended to the mixture track's name.
    • waveform-to-labels:
      • This should be classlist for model. The class indexes output by the model during a forward pass will be used to index into this classlist.
  • effect_type (str)
    • Target effect for this model. Must be one of ["waveform-to-waveform", "waveform-to-labels"].
  • multichannel (bool)
    • If multichannel is set to true, stereo tracks are passed to the model as multichannel audio tensors, with shape (2, n). Note that this means that the input could either be a mono track with shape (1, n) or stereo track with shape (2, n).
    • If multichannel is set to false, stereo tracks are downmixed, meaning that the input audio tensor will always be shape (1, n).

Making Your Model Built-In To Audacity

By default, users have to click on the Add From HuggingFace button on the Audacity Model Manager and enter the desired repo's ID to install a community contributed model. If you, instead, would like your community contributed model to show up in Audacity's Model Manager by default, please open a request here.

Example - Waveform-to-Waveform model

Here's a minimal example for a model that simply boosts volume by multiplying the incoming audio by a factor of 2.

We can sum up the whole process into 4 steps:

  1. Developing your model
  2. Wrapping your model using audacitorch
  3. Creating a metadata document
  4. Exporting to HuggingFace

Developing your model

First, we create our model. There are no internal constraints on what the internal model architecture should be, as long as you can use torch.jit.script or torch.jit.trace to serialize it, and it is able to meet the input-output constraints specified in waveform-to-waveform and waveform-to-labels models.

import torch
import torch.nn as nn

class MyVolumeModel(nn.Module):

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # do the neural net magic!
        x = x * 2

        return x

Making sure your model is compatible with torchscript

PyTorch makes it really easy to deploy your Python models in C++ by using torchscript, an intermediate representation format for torch models that can be called in C++. Many of Python's built-in functions are supported by torchscript. However, not all Python operations are supported by the torchscript environment, meaning that you are only allowed to use a subset of Python operations in your model code. See the torch.jit docs to learn more about writing torchscript-compatible code.

If your model computes spectrograms (or requires any kind of preprocessing/postprocessing), make sure those operations are compatible with torchscript, like torchaudio's operation set.

Useful links:

Wrapping your model using audacitorch

Now, we create a wrapper class for our model. Because our model returns an audio waveform as output, we'll use WaveformToWaveformBase as our parent class. For both WaveformToWaveformBase and WaveformToLabelsBase, we need to implement the do_forward_pass method with our processing code. See the docstrings for more details.

from audacitorch import WaveformToWaveformBase

class MyVolumeModelWrapper(WaveformToWaveformBase):
    
    def do_forward_pass(self, x: torch.Tensor) -> torch.Tensor:
        
        # do any preprocessing here! 
        # expect x to be a waveform tensor with shape (n_channels, n_samples)

        output = self.model(x)

        # do any postprocessing here!
        # the return value should be a multichannel waveform tensor with shape (n_channels, n_samples)
    
        return output

Creating a metadata document

Audacity models need a metadata file. See the metadata spec to learn about the required fields.

metadata = {
    'sample_rate': 48000, 
    'domain_tags': ['music', 'speech', 'environmental'],
    'short_description': 'Use me to boost volume by 3dB :).',
    'long_description':  'This description can be a max of 280 characters aaaaaaaaaaaaaaaaaaaa.',
    'tags': ['volume boost'],
    'labels': ['boosted'],
    'effect_type': 'waveform-to-waveform',
    'multichannel': False,
}

All set! We can now proceed to serialize the model to torchscript and save the model, along with its metadata.

from pathlib import Path
from audacitorch.utils import save_model, validate_metadata, \
                              get_example_inputs, test_run

# create a root dir for our model
root = Path('booster-net')
root.mkdir(exist_ok=True, parents=True)

# get our model
model = MyVolumeModel()

# wrap it
wrapper = MyVolumeModelWrapper(model)

# serialize it using torch.jit.script, torch.jit.trace,
# or a combination of both. 

# option 1: torch.jit.script 
# using torch.jit.script is preferred for most cases, 
# but may require changing a lot of source code
serialized_model = torch.jit.script(wrapper)

# option 2: torch.jit.trace
# using torch.jit.trace is typically easier, but you
# need to be extra careful that your serialized model behaves 
# properly after tracing
example_inputs = get_example_inputs()
serialized_model = torch.jit.trace(wrapper, example_inputs[0], 
                                    check_inputs=example_inputs)

# take your model for a test run!
test_run(serialized_model)

# check that we created our metadata correctly
success, msg = validate_metadata(metadata)
assert success

# save!
save_model(serialized_model, metadata, root)

Exporting to HuggingFace

You should now have a directory structure that looks like this:

/booster-net/
/booster-net/model.pt
/booster-net/metadata.json

This will be the repository for your audacity model. Make sure to add a readme with the audacity tag in the YAML metadata, so it show up on the explore tab of Audacity's Deep Learning Tools.

Create a README.md inside booster-net/, and add the following header:

in README.md

---
tags: audacity
---

Awesome! It's time to push to HuggingFace. See their documentation for adding a model to the HuggingFace model hub.

Debugging Your Model in Audacity

After serializing, you may need to debug your model inside Audacity, to make sure that it handles inputs correctly, doesn't crash while processing, and produces the correct output. While debugging, make sure your model isn't available through other users through the Explore HuggingFace button by temporarily removing the audacity tag from your README file. If your model fails internally while processing audio, you may see something like this:

To debug, you can access the error logs through the Help menu, in Help->Diagnostics->Show Log.... Any torchscript errors that may occur during the forward pass will be redirected here.

Example - Exporting a Pretrained Asteroid model

See this example notebook, where we serialize a pretrained ConvTasNet model for speech separation using the Asteroid source separation library.

Example - Exporting a Pretrained S2T model

See this example notebook, where we serialize a pretrained speech to text transformer from Facebook.


Owner
Hugo Flores García
PhD @interactiveaudiolab
Hugo Flores García
LightningFSL: Pytorch-Lightning implementations of Few-Shot Learning models.

LightningFSL: Few-Shot Learning with Pytorch-Lightning In this repo, a number of pytorch-lightning implementations of FSL algorithms are provided, inc

Xu Luo 76 Dec 11, 2022
Code for "Long-tailed Distribution Adaptation"

Long-tailed Distribution Adaptation (Accepted in ACM MM2021) This project is built upon BBN. Installation pip install -r requirements.txt Usage Traini

Zhiliang Peng 10 May 18, 2022
Deep Learning Package based on TensorFlow

White-Box-Layer is a Python module for deep learning built on top of TensorFlow and is distributed under the MIT license. The project was started in M

YeongHyeon Park 7 Dec 27, 2021
Development kit for MIT Scene Parsing Benchmark

Development Kit for MIT Scene Parsing Benchmark [NEW!] Our PyTorch implementation is released in the following repository: https://github.com/hangzhao

MIT CSAIL Computer Vision 424 Dec 01, 2022
[ACM MM 2019 Oral] Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation

Contents Cycle-In-Cycle GANs Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Acknowledgments Relat

Hao Tang 67 Dec 14, 2022
Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1

Clova AI Research 97 Dec 23, 2022
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 04, 2023
Tree-based Search Graph for Approximate Nearest Neighbor Search

TBSG: Tree-based Search Graph for Approximate Nearest Neighbor Search. TBSG is a graph-based algorithm for ANNS based on Cover Tree, which is also an

Fanxbin 2 Dec 27, 2022
Sub-tomogram-Detection - Deep learning based model for Cyro ET Sub-tomogram-Detection

Deep learning based model for Cyro ET Sub-tomogram-Detection High degree of stru

Siddhant Kumar 2 Feb 04, 2022
Deeplab-resnet-101 in Pytorch with Jaccard loss

Deeplab-resnet-101 Pytorch with Lovász hinge loss Train deeplab-resnet-101 with binary Jaccard loss surrogate, the Lovász hinge, as described in http:

Maxim Berman 95 Apr 15, 2022
TextureGAN in Pytorch

TextureGAN This code is our PyTorch implementation of TextureGAN [Project] [Arxiv] TextureGAN is a generative adversarial network conditioned on sketc

Patsorn 147 Dec 14, 2022
repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments

repro_eval repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments. The measures were d

IR Group at Technische Hochschule Köln 9 May 25, 2022
Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)

Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild Akash Sengupta, Ignas Budvytis, Robert

Akash Sengupta 149 Dec 14, 2022
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
This repository contains the code for the ICCV 2019 paper "Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics"

Occupancy Flow This repository contains the code for the project Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics. You can find detail

189 Dec 29, 2022
The Rich Get Richer: Disparate Impact of Semi-Supervised Learning

The Rich Get Richer: Disparate Impact of Semi-Supervised Learning Preprocess file of the dataset used in implicit sub-populations: (Demographic groups

<a href=[email protected]"> 4 Oct 14, 2022
This repository contains the source code for the paper "DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks",

DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks Project Page | Video | Presentation | Paper | Data L

Facebook Research 281 Dec 22, 2022
Official code for "On the Frequency Bias of Generative Models", NeurIPS 2021

Frequency Bias of Generative Models Generator Testbed Discriminator Testbed This repository contains official code for the paper On the Frequency Bias

35 Nov 01, 2022
The code of "Dependency Learning for Legal Judgment Prediction with a Unified Text-to-Text Transformer".

Code data_preprocess.py: preprocess data for Dependent-T5. parameters.py: define parameters of Dependent-T5. train_tools.py: traning and evaluation co

1 Apr 21, 2022
Codes for CVPR2021 paper "PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization"

PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization (CVPR 2021) This is the official implementation of PW

Intelligent Robotics and Machine Vision Lab 42 Dec 18, 2022