Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Overview

Introduction

Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper

Song Park1, Sanghyuk Chun2, 3, Junbum Cha3, Bado Lee3, Hyunjung Shim1
1 School of Integrated Technology, Yonsei university
2 NAVER AI Lab
3 NAVER CLOVA

A few-shot font generation (FFG) method has to satisfy two objectives: the generated images should preserve the underlying global structure of the target character and present the diverse local reference style. Existing FFG methods aim to disentangle content and style either by extracting a universal representation style or extracting multiple component-wise style representations. However, previous methods either fail to capture diverse local styles or cannot be generalized to a character with unseen components, e.g., unseen language systems. To mitigate the issues, we propose a novel FFG method, named Multiple Localized Experts Few-shot Font Generation Network (MX-Font). MX-Font extracts multiple style features not explicitly conditioned on component labels, but automatically by multiple experts to represent different local concepts, e.g., left-side sub-glyph. Owing to the multiple experts, MX-Font can capture diverse local concepts and show the generalizability to unseen languages. During training, we utilize component labels as weak supervision to guide each expert to be specialized for different local concepts. We formulate the component assign problem to each expert as the graph matching problem, and solve it by the Hungarian algorithm. We also employ the independence loss and the content-style adversarial loss to impose the content-style disentanglement. In our experiments, MX-Font outperforms previous state-of-the-art FFG methods in the Chinese generation and cross-lingual, e.g., Chinese to Korean, generation.

You can find more related projects on the few-shot font generation at the following links:


Prerequisites

conda install numpy scipy scikit-image tqdm jsonlib-python3 fonttools

Usage

Note that, we only provide the example font files; not the font files used for the training the provided weight (generator.pth). The example font files are downloaded from here.

Preparing Data

  • The examples of datasets are in (./data)

Font files (.ttf)

  • Prepare the TrueType font files(.ttf) to use for the training and the validation.
  • Put the training font files and validation font files into separate directories.

The text files containing the available characters of .ttf files (.txt)

  • If you have the available character list of a .ttf file, save its available characters list to a text file (.txt) with the same name in the same directory with the ttf file.
    • (example) TTF file: data/ttfs/train/MaShanZheng-Regular.ttf, its available characters: data/ttfs/train/MaShanZheng-Regular.txt
  • You can also generate the available characters files automatically using the get_chars_from_ttf.py
# Generating the available characters file

python get_chars_from_ttf.py --root_dir path/to/ttf/dir
  • --root_dir: The root directory to find the .ttf files. All the .ttf files under this directory and its subdirectories will be processed.

The json files with decomposition information (.json)

  • The files for the decomposition information are needed.
    • The files for the Chinese characters are provided. (data/chn_decomposition.json, data/primals.json)
    • If you want to train the model with a language other than Chinese, the files for the decomposition rule (see below) are also needed.
      • Decomposition rule
        • structure: dict (in json format)
        • format: {char: [list of components]}
        • example: {'㐬': ['亠', '厶', '川'], '㐭': ['亠', '囗', '口']}
      • Primals
        • structure: list (in json format)
        • format: [All the components in the decomposition rule file]
        • example: ['亠', '厶', '川', '囗', '口']

Training

Modify the configuration file (cfgs/train.yaml)

- use_ddp:  whether to use DataDistributedParallel, for multi-GPUs.
- port:  the port for the DataDistributedParallel training.

- work_dir:  the directory to save checkpoints, validation images, and the log.
- decomposition:  path to the "decomposition rule" file.
- primals:  path to the "primals" file.

- dset:  (leave blank)
  - train:  (leave blank)
    - data_dir : path to .ttf files for the training
  - val: (leave blank)
    - data_dir : path to .ttf files for the validation
    - source_font : path to .ttf file used as the source font during the validation

Run training

python train.py cfgs/train.yaml
  • arguments
    • path/to/config (first argument): path to configration file.
    • --resume (optional) : path to checkpoint to resume.

Test

Preparing the reference images

  • Prepare the reference images and the .ttf file to use as the source font.
  • The reference images are should be placed in this format:
    * data_dir
    |-- font1
        |-- char1.png
        |-- char2.png
        |-- char3.png
    |-- font2
        |-- char1.png
        |-- char2.png
            .
            .
            .
  • The names of the directory or the image files are not important, however, the images with the same reference style are should be grouped with the same directory.
  • If you want to generate only specific characters, prepare the file containing the list of the characters to generate.
    • The example file is provided. (data/chn_gen.json)

Modify the configuration file (cfgs/eval.yaml)

- dset:  (leave blank)
  - test:  (leave blank)
    - data_dir: path to reference images
    - source_font: path to .ttf file used as the source font during the generation
    - gen_chars_file: path to file of the characters to generate. Leave blank if you want to generate all the available characters in the source font.

Run test

python eval.py \
    cfgs/eval.yaml \
    --weight generator.pth \
    --result_dir path/to/save/images
  • arguments
    • path/to/config (first argument): path to configration file.
    • --weight : path to saved weight to test.
    • --result_dir: path to save generated images.

Code license

This project is distributed under MIT license, except modules.py which is adopted from https://github.com/NVlabs/FUNIT.

MX-Font
Copyright (c) 2021-present NAVER Corp.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Acknowledgement

This project is based on clovaai/dmfont and clovaai/lffont.

How to cite

@article{park2021mxfont,
    title={Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts},
    author={Park, Song and Chun, Sanghyuk and Cha, Junbum and Lee, Bado and Shim, Hyunjung},
    year={2021},
    journal={arXiv preprint arXiv:2104.00887},
}
Owner
Clova AI Research
Open source repository of Clova AI Research, NAVER & LINE
Clova AI Research
TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular potentials

TorchMD-net TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular

TorchMD 104 Jan 03, 2023
Recurrent Conditional Query Learning

Recurrent Conditional Query Learning (RCQL) This repository contains the Pytorch implementation of One Model Packs Thousands of Items with Recurrent C

Dongda 4 Nov 28, 2022
Project of 'TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement '

TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement Codes for TMM20 paper "TBEFN: A Two-branch Exposure-fusion Network for Low

KUN LU 31 Nov 06, 2022
Learning to Prompt for Continual Learning

Learning to Prompt for Continual Learning (L2P) Official Jax Implementation L2P is a novel continual learning technique which learns to dynamically pr

Google Research 207 Jan 06, 2023
Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation

FLAME Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation, accepted at the 17th IEEE Internation Co

Neelabh Sinha 19 Dec 17, 2022
A python library for self-supervised learning on images.

Lightly is a computer vision framework for self-supervised learning. We, at Lightly, are passionate engineers who want to make deep learning more effi

Lightly 2k Jan 08, 2023
Code repository for our paper regarding the L3D dataset.

The Large Labelled Logo Dataset (L3D): A Multipurpose and Hand-Labelled Continuously Growing Dataset Website: https://lhf-labs.github.io/tm-dataset Da

LHF Labs 9 Dec 14, 2022
A PyTorch version of You Only Look at One-level Feature object detector

PyTorch_YOLOF A PyTorch version of You Only Look at One-level Feature object detector. The input image must be resized to have their shorter side bein

Jianhua Yang 25 Dec 30, 2022
Source code for the paper "SEPP: Similarity Estimation of Predicted Probabilities for Defending and Detecting Adversarial Text" PACLIC 2021

Adversarial text generator Refer to "adversarial_text_generator"[https://github.com/quocnsh/SEPP_generator] project for generating adversarial texts A

0 Oct 05, 2021
To build a regression model to predict the concrete compressive strength based on the different features in the training data.

Cement-Strength-Prediction Problem Statement To build a regression model to predict the concrete compressive strength based on the different features

Ashish Kumar 4 Jun 11, 2022
DRIFT is a tool for Diachronic Analysis of Scientific Literature.

About DRIFT is a tool for Diachronic Analysis of Scientific Literature. The application offers user-friendly and customizable utilities for two modes:

Rajaswa Patil 108 Dec 12, 2022
Code for the paper "Attention Approximates Sparse Distributed Memory"

Attention Approximates Sparse Distributed Memory - Codebase This is all of the code used to run analyses in the paper "Attention Approximates Sparse D

Trenton Bricken 14 Dec 05, 2022
Catalyst.Detection

Accelerated DL R&D PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentatio

Catalyst-Team 12 Oct 25, 2021
Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal, multi-exposure and multi-focus image fusion.

U2Fusion Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal (VIS-IR, medical), multi

Han Xu 129 Dec 11, 2022
Pytorch version of VidLanKD: Improving Language Understanding viaVideo-Distilled Knowledge Transfer

VidLanKD Implementation of VidLanKD: Improving Language Understanding via Video-Distilled Knowledge Transfer by Zineng Tang, Jaemin Cho, Hao Tan, Mohi

Zineng Tang 54 Dec 20, 2022
Trainable Bilateral Filter Layer (PyTorch)

Trainable Bilateral Filter Layer (PyTorch) This repository contains our GPU-accelerated trainable bilateral filter layer (three spatial and one range

FabianWagner 26 Dec 25, 2022
NAS-FCOS: Fast Neural Architecture Search for Object Detection (CVPR 2020)

NAS-FCOS: Fast Neural Architecture Search for Object Detection This project hosts the train and inference code with pretrained model for implementing

Ning Wang 180 Dec 06, 2022
Source code of generalized shuffled linear regression

Generalized-Shuffled-Linear-Regression Code for the ICCV 2021 paper: Generalized Shuffled Linear Regression. Authors: Feiran Li, Kent Fujiwara, Fumio

FEI 7 Oct 26, 2022
Official code of paper "PGT: A Progressive Method for Training Models on Long Videos" on CVPR2021

PGT Code for paper PGT: A Progressive Method for Training Models on Long Videos. Install Run pip install -r requirements.txt. Run python setup.py buil

Bo Pang 27 Mar 30, 2022
Doods2 - API for detecting objects in images and video streams using Tensorflow

DOODS2 - Return of DOODS Dedicated Open Object Detection Service - Yes, it's a b

Zach 101 Jan 04, 2023