OCRA (Object-Centric Recurrent Attention) source code

Related tags

Deep LearningOCRA
Overview

OCRA (Object-Centric Recurrent Attention) source code

Hossein Adeli and Seoyoung Ahn

Please cite this article if you find this repository useful:


  • For data generation and loading

    1. stimuli_util.ipynb includes all the codes and the instructions for how to generate the datasets for the three tasks; MultiMNIST, MultiMNIST Cluttered and MultiSVHN.
    2. loaddata.py should be updated with the location of the data files for the tasks if not the default used.
  • For training and testing the model:

    1. OCRA_demo.ipynb includes the code for building and training the model. In the first notebook cell, a hyperparameter file should be specified. Parameter files are provided here (different settings are discussed in the supplementary file)

    2. multimnist_params_10glimpse.txt and multimnist_params_3glimpse.txt set all the hyperparameters for MultiMNIST task with 10 and 3 glimpses, respectively.

    OCRA_demo-MultiMNIST_3glimpse_training.ipynb shows how to load a parameter file and train the model.

    1. multimnist_cluttered_params_7glimpse.txt and multimnist_cluttered_params_5glimpse.txt set all the hyperparameters for MultiMNIST Cluttered task with 7 and 5 glimpses, respectively.

    2. multisvhn_params.txt sets all the hyperparameters for the MultiSVHN task with 12 glimpses.

    3. This notebook also includes code for testing a trained model and also for plotting the attention windows for sample images.

    OCRA_demo-cluttered_5steps_loadtrained.ipynb shows how to load a trained model and test it on the test dataset. Example pretrained models are included in the repository under pretrained folder. Download all the pretrained models.

Image-level accuracy averaged from 5 runs

Task (Model name) Error Rate (SD)
MultiMNIST (OCRA-10glimpse) 5.08 (0.17)
Cluttered MultiMNIST (OCRA-7glimpse) 7.12 (1.05)
MultiSVHN (OCRA-12glimpse) 10.07 (0.53)

Validation losses during training

From MultiMNIST OCRA-10glimpse:

From Cluttered MultiMNIST OCRA-7glimpse

Supplementary Results:

Object-centric behavior

The opportunity to observe the object-centric behavior is bigger in the cluttered task. Since the ratio of the glimpse size to the image size is small (covering less than 4 percent of the image), the model needs to optimally move and select the objects to accurately recognize them. Also reducing the number of glimpses has a similar effect, (we experimented with 3 and 5) forcing the model to leverage its object-centric representation to find the objects without being distracted by the noise segments. We include many more examples of the model behavior with both 3 and 5 glimpses to show this behavior.

MultiMNIST Cluttered task with 5 glimpses






MultiMNIST Cluttered task with 3 glimpses





The Street View House Numbers Dataset

We train the model to "read" the digits from left to right by having the order of the predicted sequence match the ground truth from left to right. We allow the model to make 12 glimpses, with the first two not being constrained and the capsule length from every following two glimpses will be read out for the output digit (e.g. the capsule lengths from the 3rd and 4th glimpses are read out to predict digit number 1; the left-most digit and so on). Below are sample behaviors from our model.

The top five rows show the original images, and the bottom five rows show the reconstructions

SVHN_gif

The generation of sample images across 12 glimpses

SVHN_gif

The generatin in a gif fromat

SVHN_gif

The model learns to detect and reconstruct objects. The model achieved ~2.5 percent error rate on recognizing individual digits and ~10 percent error in recognizing whole sequences still lagging SOTA performance on this measure. We believe this to be strongly related to our small two-layer convolutional backbone and we expect to get better results with a deeper one, which we plan to explore next. However, the model shows reasonable attention behavior in performing this task.

Below shows the model's read and write attention behavior as it reads and reconstructs one image.

Herea are a few sample mistakes from our model:

SVHN_error1
ground truth [ 1, 10, 10, 10, 10]
prediction [ 0, 10, 10, 10, 10]

SVHN_error2
ground truth [ 2, 8, 10, 10, 10]
prediction [ 2, 9, 10, 10, 10]

SVHN_error3
ground truth [ 1, 2, 9, 10, 10]
prediction [ 1, 10, 10, 10, 10]

SVHN_error4
ground truth [ 5, 1, 10, 10, 10]
prediction [ 5, 7, 10, 10, 10]


Some MNIST cluttered results

Testing the model on MNIST cluttered dataset with three time steps


Code references:

  1. XifengGuo/CapsNet-Pytorch
  2. kamenbliznashki/generative_models
  3. pitsios-s/SVHN
Owner
Hossein Adeli
Hossein Adeli
A Python 3 package for state-of-the-art statistical dimension reduction methods

direpack: a Python 3 library for state-of-the-art statistical dimension reduction techniques This package delivers a scikit-learn compatible Python 3

Sven Serneels 32 Dec 14, 2022
GPU-accelerated Image Processing library using OpenCL

pyclesperanto pyclesperanto is a python package for clEsperanto - a multi-language framework for GPU-accelerated image processing. clEsperanto uses Op

17 Dec 25, 2022
The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022.

Generative Modeling with Optimal Transport Maps The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal

Litu Rout 30 Dec 22, 2022
A strongly-typed genetic programming framework for Python

monkeys "If an army of monkeys were strumming on typewriters they might write all the books in the British Museum." monkeys is a framework designed to

H. Chase Stevens 115 Nov 27, 2022
Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more.

CycleGAN PyTorch | project page | paper Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs, for

Jun-Yan Zhu 11.5k Dec 30, 2022
An Extendible (General) Continual Learning Framework based on Pytorch - official codebase of Dark Experience for General Continual Learning

Mammoth - An Extendible (General) Continual Learning Framework for Pytorch NEWS STAY TUNED: We are working on an update of this repository to include

AImageLab 277 Dec 28, 2022
This project hosts the code for implementing the ISAL algorithm for object detection and image classification

Influence Selection for Active Learning (ISAL) This project hosts the code for implementing the ISAL algorithm for object detection and image classifi

25 Sep 11, 2022
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation

Multipath RefineNet A MATLAB based framework for semantic image segmentation and general dense prediction tasks on images. This is the source code for

Guosheng Lin 575 Dec 06, 2022
Semantic similarity computation with different state-of-the-art metrics

Semantic similarity computation with different state-of-the-art metrics Description • Installation • Usage • License Description TaxoSS is a semantic

6 Jun 22, 2022
Image Recognition using Pytorch

PyTorch Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot practice and contributing in

Sarat Chinni 1 Nov 02, 2021
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

Mesa: A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for

Zhuang AI Group 105 Dec 06, 2022
Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*

Developed an optimized algorithm which finds the most optimal path between 2 points in a 3D Maze using various AI search techniques like BFS, DFS, UCS, Greedy BFS and A*. The algorithm was extremely

1 Mar 28, 2022
Python based Advanced AI Assistant

Knick is a virtual artificial intelligence project, fully developed in python. The objective of this project is to develop a virtual assistant that can handle our minor, intermediate as well as heavy

19 Nov 15, 2022
An unofficial PyTorch implementation of a federated learning algorithm, FedAvg.

Federated Averaging (FedAvg) in PyTorch An unofficial implementation of FederatedAveraging (or FedAvg) algorithm proposed in the paper Communication-E

Seok-Ju Hahn 123 Jan 06, 2023
IEEE Winter Conference on Applications of Computer Vision 2022 Accepted

SSKT(Accepted WACV2022) Concept map Dataset Image dataset CIFAR10 (torchvision) CIFAR100 (torchvision) STL10 (torchvision) Pascal VOC (torchvision) Im

1 Nov 17, 2022
This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer Capacitor domain using text similarity indexes: An experimental analysis "

kwd-extraction-study This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer

ping 543f 1 Dec 05, 2022
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi

LSTM-Time-Series-Prediction A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi Contest. The Link of the Cont

KevinCHEN 1 Jun 13, 2022
[peer review] An Arbitrary Scale Super-Resolution Approach for 3D MR Images using Implicit Neural Representation

ArSSR This repository is the pytorch implementation of our manuscript "An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonan

Qing Wu 19 Dec 12, 2022
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Hieu Duong 7 Jan 12, 2022