FluidNet re-written with ATen tensor lib

Overview

fluidnet_cxx: Accelerating Fluid Simulation with Convolutional Neural Networks. A PyTorch/ATen Implementation.

This repository is based on the paper, Accelerating Eulerian Fluid Simulation With Convolutional Networks by Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, Ken Perlin on the accelation of fluid simulations by embedding a neural network in an existing solver for pressure prediction, replacing an expensive pressure projection linked to a Poisson equation on the pressure, which is usually solved with iterative methods (PCG or Jacobi methods). We implemented our code with PyTorch, effectively replacing all the original Torch/Lua and C++/CUDA implementation of the inviscid, incompressible fluid solver (based on the open-source fluid simulator Mantaflow, aimed at the Computer Graphics community). Find the original FluidNet repository here.

We have retaken the original FluidNet NN architecture and added different features, such as replacing upsampling with deconvolution layers, or directly replacing the complete architecture with a deeper MultiScale net which showed more accurate results at the expense of inference speed.

This work allows to compare both the code perfomace when run in a single GPU unit and the accuracy of this data-driven method in comparison with tradional mehtods (Jacobi) or other fluid simulation methods like Lattice Boltzmann Methods.

Results

Simulations of a buoyancy-driven plume flow are performed with different methods for the Poisson equation resolution. An inlet is placed at the bottom of the domain, where a lighter fluid (with density rho0) is injected with velocity v0 into a quiescent heavier fluid. Results show that some work is still needed to predict a correct plume growth rate, due probably to a poor modelling of buoyant forces by the trained model.

Alt text

Resolution with ConvNet | Jacobi Method 28 iter | Jacobi Method 100 iter

Growth Rate of the plume's head for Ri=0.14

Functionalities:

  • NOTE: For the moment, only 2D simulations and training are supported. 3D needs still some work.
  • Full eulerian (incompressible and inviscid) fluid simulator:
    • Momentum equation resolution using a splitting algorithm:
      • Advection of velocity + External forces
      • Enforcing of non-divergence of velocity constraint through Poisson equation resolution, resulting in a pressure gradient that corrects the velocity from the previous step. Step replaced by a fully convolutional Neural Network with divergence of velocity as input and pressure as output.
    • Unconditional Stable MacCormack discretization of velocity advection algorithm.
    • Jacobi method implementation for comparison.
  • Dataset:
    • Generation with FluidNet own Mantaflow sript.
    • Random insertion of objects and velocity emitters, as well as gravity forces.
    • Pre-processed into PyTorch objects
  • Pre-trained models:
  • Training:
    • Several options for loss function:
      • MSE of pressure
      • "Physical" loss: MSE of velocity divergence (unsupervised)
      • MSE of velocity divergence after several timesteps.
    • Short term divergence loss: 8 hours training
    • Short+Long term divergence loss: ~2 days
  • Inference. Two test cases:
    • Buoyant plume.
    • Rayleigh Taylor instability.
    • Launch your simulation with the available pre-trained model.
    • Comparison with Jacobi method resolution + LBM with open-sourced C++ library Palabos
  • Results visualization:
    • Matplotlib
    • Paraview post-processing tool (VTK files)

Models

Requirements

  • Python 3.X
  • C++11
  • Pytorch 0.4 (Including ATen Tensor library, exposing PyTorch library in C++)
  • FluidNet own Mantaflow implementation
  • PyVTK (pip install)
  • (Optional) Paraview
  • (Optional) OpenCV2

ATen allows to write generic code that works on both devices. More information in ATen repo. It can be called from PyTorch, using its new extension-cpp.

Installation

To install this repo:

  1. Clone this repo:
https://github.com/jolibrain/fluidnet_cxx.git
  1. Install Pytorch 0.4: Pytorch 0.4 NOTE: Training is done in GPUs

  2. Install cpp extensions for fluid solver: C++ scripts have been written using PyTorch's backend C++ library ATen. These scripts are used for the advection part of the solver. Follow these instructions from main directory:

cd pytorch/lib/fluid/cpp
python3 setup.py install # if you want to install it on local user, use --user

Training

Dataset We use the same 2D dataset as the original FluidNet Section 1: Generating the data - Generating training data (generated with MantaFlow) for training our ConvNet.

Running the training To train the model, go to pytorch folder:

cd pytorch

The dataset file structure should be located in <dataDir> folder with the following structure:

.
└── dataDir
    └── dataset
        ├── te
        └── tr

Precise the location of the dataset in pytorch/config.yaml writing the folder location at dataDir (use absolute paths). Precise also dataset (name of the dataset), and output folder modelDirwhere the trained model and loss logs will be stored and the model name modelFilename.

Run the training :

python3 fluid_net_train.py

For a given dataset, a pre-processing operation must be performed to save it as PyTorch objects, easily loaded when training. This is done automatically if no preprocessing log is detected. This process can take some time but it is necessary only once per dataset.

Training can be stopped using Ctrl+C and then resumed by running:

python3 fluid_net_train.py --resume

You can also monitor the loss during training by running in /pytorch

python3 plot_loss.py <modelDir> #For total training and validation losses
#or
python3 plot_5loss.py <modelDir> #For each of the losses (e.g: L1(div) and L2(div))

It is also possible to load the saved model and print its output fields and compare it to targets (Pressure, Velocity, Divergence and Errors):

python3 print_output.py <modelDir> <modelFilename>
#example:
python3 print_output.py data/model_pLoss_L2 convModel

Training options

You can set the following options for training from the terminal command line:

  • -h : displays help message
  • --trainingConf : YAML config file for training. Default = config.yaml.
  • --modelDir : Output folder location for trained model. When resuming, reads from this location.
  • --modelFilename : Model name.
  • --dataDir : Dataset location.
  • --resume : Resumes training from checkpoint in modelDir
  • --bsz : Batch size for training.
  • --maxEpochs : Maximum number training epochs.
  • --noShuffle : Remove dataset shuffle when training.
  • --lr : Learning rate.
  • --numWorkers : Number of parallel workers for dataset loading.
  • --outMode : Training debug options. Prints or shows validation dataset. save = saves plots to disk show = shows plots in window during training none = do nothing

The rest of the training parameters are set in the trainingConf file, by default config.yaml.

Parameters in the YAML config file are copied into a python dictionary and saved as two separated dictionaries in modelDir, one conf dictionary for parameters related to training (batch size, maximum number of epochs) and one mconf dictionary for parameters related to the model (inputs, losses, scaling options etc)

Test

Run the buoyant plume test case by running:

cd pytorch
python3 plume.py --modelDir <modelDir> --modelFilename <modelFilename> --outputFolder <outputFolder>

with:

  • <modelDir> : folder with trained model.
  • <modelFilename> : Trained model name.
  • <outputFolder> : Folder for saving simulation results.

You can also stop the simulation (Ctrl+C) and restart it afterwards:

python3 plume.py --restartSim

Test options

  • -h : displays help message
  • --simConf : YAML config file for simulation. Default = plumeConfig.yaml.
  • --trainingConf : YAML config file for training. Default = config.yaml.
  • --modelDir : Trained model location.
  • --modelFilename : Model name.
  • --outputFolder : Location of output results.
  • --restartSim : Restart simulation from checkpoint in <outputFolder>.

Check plumeConfig.yaml to see how the configuation file for the simulation is organized.

Modifying the NN architecture

If you want to try your own architecture, you only have to follow these simple rules:

  • Write your model in a separate script and save it inside pytorch/lib.
  • Open model.py and import your own script as a module. Go to class FluidNet here.
  • Ideally, as with the Multi-Scale Net example, you should just have to precise the number of channels from the input, and add your net forward pass as in the multicale example here

Extending the cpp code:

The cpp code, written with ATen library, can be compiled, tested and run on its own. You will need OpenCV2 to visualize output of the pressure and velocity fields, as matplotlib is unfortunately not available in cpp!

Test

First, generate the test data from FluidNet Section 3. Limitations of the current system - Unit Testing and write the location of your folder in:

solver_cpp/test/test_fluid.cpp
#define DATA <path_to_data>

Run the following commands:

cd solver_cpp/
mkdir build_test
cd build_test
cmake .. -DFLUID_TEST=ON # Default is OFF
./test/fluidnet_sim

This will test every routine of the solver (advection, divergence calculation, velocity update, adding of gravity and buoyancy, linear system resolution with Jacobi method). These tests are taken from FluidNet and compare outputs of Manta to ours, except for advection when there is no Manta equivalent. In that case, we compare to the original FluidNet advection.

Run

cd solver_cpp/
mkdir build
cd build
cmake .. -DFLUID_TEST=OFF # Default is OFF
./simulate/fluidnet_sim

Output images will be written in build folder, and can be converted into gif using ImageMagick.

NOTE: For the moment, only 2D simulations and training are supported, as bugs are still found for the 3D advection.

Owner
JoliBrain
Pretty AI for solving real world problems
JoliBrain
TagLab: an image segmentation tool oriented to marine data analysis

TagLab: an image segmentation tool oriented to marine data analysis TagLab was created to support the activity of annotation and extraction of statist

Visual Computing Lab - ISTI - CNR 49 Dec 29, 2022
When in Doubt: Improving Classification Performance with Alternating Normalization

When in Doubt: Improving Classification Performance with Alternating Normalization Findings of EMNLP 2021 Menglin Jia, Austin Reiter, Ser-Nam Lim, Yoa

Menglin Jia 13 Nov 06, 2022
A model which classifies reviews as positive or negative.

SentiMent Analysis In this project I built a model to classify movie reviews fromn the IMDB dataset of 50K reviews. WordtoVec : Neural networks only w

Rishabh Bali 2 Feb 09, 2022
PenguinSpeciesPredictionML - Basic model to predict Penguin species based on beak size and sex.

Penguin Species Prediction (ML) 🐧 👨🏽‍💻 What? 💻 This project is a basic model using sklearn methods to predict Penguin species based on beak size

Tucker Paron 0 Jan 08, 2022
PyTorch implementation of "Simple and Deep Graph Convolutional Networks"

Simple and Deep Graph Convolutional Networks This repository contains a PyTorch implementation of "Simple and Deep Graph Convolutional Networks".(http

chenm 253 Dec 08, 2022
Implementation of ICCV 2021 oral paper -- A Novel Self-Supervised Learning for Gaussian Mixture Model

SS-GMM Implementation of ICCV 2021 oral paper -- Self-Supervised Image Prior Learning with GMM from a Single Noisy Image with supplementary material R

HUST-The Tan Lab 4 Dec 05, 2022
Liver segmentation using MONAI and pytorch

Machine Learning use case in the field of Healthcare. In this project MONAI and pytorch frameworks are used for 3D Liver segmentation.

Abhishek Gajbhiye 2 May 30, 2022
Simulation code and tutorial for BBHnet training data

Simulation Dataset for BBHnet NOTE: OLD README, UPDATE IN PROGRESS We generate simulation dataset to train BBHnet, our deep learning framework for det

0 May 31, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021) Jiaxi Jiang, Kai Zhang, Radu Timofte Computer Vision Lab, ETH Zurich, Switzerland 🔥

Jiaxi Jiang 282 Jan 02, 2023
A highly efficient, fast, powerful and light-weight anime downloader and streamer for your favorite anime.

AnimDL - Download & Stream Your Favorite Anime AnimDL is an incredibly powerful tool for downloading and streaming anime. Core features Abuses the dev

KR 759 Jan 08, 2023
Unofficial implementation of the paper: PonderNet: Learning to Ponder in TensorFlow

PonderNet-TensorFlow This is an Unofficial Implementation of the paper: PonderNet: Learning to Ponder in TensorFlow. Official PyTorch Implementation:

1 Oct 23, 2022
Sentinel-1 vessel detection model used in the xView3 challenge

sar_vessel_detect Code for the AI2 Skylight team's submission in the xView3 competition (https://iuu.xview.us) for vessel detection in Sentinel-1 SAR

AI2 6 Sep 10, 2022
ilpyt: imitation learning library with modular, baseline implementations in Pytorch

ilpyt The imitation learning toolbox (ilpyt) contains modular implementations of common deep imitation learning algorithms in PyTorch, with unified in

The MITRE Corporation 11 Nov 17, 2022
Colab notebook and additional materials for Python-driven analysis of redlining data in Philadelphia

RedliningExploration The Google Colaboratory file contained in this repository contains work inspired by a project on educational inequality in the Ph

Benjamin Warren 1 Jan 20, 2022
A project studying the influence of communication in multi-objective normal-form games

Communication in Multi-Objective Normal-Form Games This repo consists of five different types of agents that we have used in our study of communicatio

Willem Röpke 0 Dec 17, 2021
Public repository of the 3DV 2021 paper "Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds"

Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds Björn Michele1), Alexandre Boulch1), Gilles Puy1), Maxime Bucher1) and Rena

valeo.ai 15 Dec 22, 2022
Official repository for: Continuous Control With Ensemble DeepDeterministic Policy Gradients

Continuous Control With Ensemble Deep Deterministic Policy Gradients This repository is the official implementation of Continuous Control With Ensembl

4 Dec 06, 2021
A PyTorch implementation of EventProp [https://arxiv.org/abs/2009.08378], a method to train Spiking Neural Networks

Spiking Neural Network training with EventProp This is an unofficial PyTorch implemenation of EventProp, a method to compute exact gradients for Spiki

Pedro Savarese 35 Jul 29, 2022
Pytorch implementation of XRD spectral identification from COD database

XRDidentifier Pytorch implementation of XRD spectral identification from COD database. Details will be explained in the paper to be submitted to NeurI

Masaki Adachi 4 Jan 07, 2023
Image Recognition using Pytorch

PyTorch Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot practice and contributing in

Sarat Chinni 1 Nov 02, 2021