Official implementation of our paper "Learning to Bootstrap for Combating Label Noise"

Related tags

Deep LearningL2B
Overview

Learning to Bootstrap for Combating Label Noise

This repo is the official implementation of our paper "Learning to Bootstrap for Combating Label Noise".

Citation

If you use this code for your research, please cite our paper "Learning to Bootstrap for Combating Label Noise".

@misc{zhou2022learning,
      title={Learning to Bootstrap for Combating Label Noise}, 
      author={Yuyin Zhou and Xianhang Li and Fengze Liu and Xuxi Chen and Lequan Yu and Cihang Xie and Matthew P. Lungren and Lei Xing},
      year={2022},
      eprint={2202.04291},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Requirements

Python >= 3.6.4
Pytorch >= 1.6.0
Higher = 0.2.1
Tensorboardx = 2.4.1

Training

First, please create a folder to store checkpoints by using the following command.

mkdir checkpoint

CIFAR-10

To reproduce the results on CIFAR dataset from our paper, please follow the command and our hyper-parameters.

First, you can adjust the corruption_prob and corruption_type to obtain different noise rates and noise type.

Second, the reweight_label indicates you are using the our L2B method. You can change it to baseline or mixup.

python  main.py  --arch res18 --dataset cifar10 --num_classes 10 --exp L2B --train_batch_size  512 \
 --corruption_prob 0.2 --reweight_label  --lr 0.15  -clipping_norm 0.25  --num_epochs 300  --scheduler cos \
 --corruption_type unif  --warm_up 10  --seed 0  

CIFAR-100

Most of settings are the same as CIFAR-10. To reproduce the results, please follow the command.

python  main.py  --arch res18 --dataset cifar100 --num_classes 100 --exp L2B --train_batch_size  256  \
--corruption_prob 0.2 --reweight_label  --lr 0.15  --clipping_norm 0.80  --num_epochs 300  --scheduler cos \
--corruption_type unif  --warm_up 10  --seed 0 \ 

ISIC2019

On the ISIC dataset, first you should download the dataset by following command.

Download ISIC dataset as follows:
wget https://isic-challenge-data.s3.amazonaws.com/2019/ISIC_2019_Training_Input.zip
wget https://isic-challenge-data.s3.amazonaws.com/2019/ISIC_2019_Training_GroundTruth.csv \

Then you can reproduce the results by following the command.

python main.py  --arch res50  --dataset ISIC --data_path isic_data/ISIC_2019_Training_Input --num_classes 8 
--exp L2B  --train_batch_size 64  --corruption_prob 0.2 --lr 0.01 --clipping_norm 0.80 --num_epochs 30 
--temperature 10.0  --wd 5e-4  --scheduler cos --reweight_label --norm_type softmax --warm_up 1 

Clothing-1M

First, the num_batch and train_batch_size indicates how many training images you want to use (we sample a balanced training data for each epoch).

Second, you can adjust the num_meta to sample different numbers of validation images to form the metaset. We use the whole validation set as metaset by default.

The data_path is where you store the data and key-label lists. And also change the data_path in the line 20 of main.py. If you have issue for downloading the dataset, please feel free to contact us.

Then you can reproduce the results by following the command.

python main.py --arch res18_224 --num_batch 250 --dataset clothing1m \
--exp L2B_clothing1m_one_stage_multi_runs  --train_batch_size 256  --lr 0.005  \
--num_epochs 300  --reweight_label  --wd 5e-4 --scheduler cos   --warm_up 0 \
--data_path /data1/data/clothing1m/clothing1M  --norm_type org  --num_classes 14 \ 
--multi_runs 3 --num_meta 14313

Contact

Yuyin Zhou

Xianhang Li

If you have any question about the code and data, please contact us directly.

Combining Diverse Feature Priors

Combining Diverse Feature Priors This repository contains code for reproducing the results of our paper. Paper: https://arxiv.org/abs/2110.08220 Blog

Madry Lab 5 Nov 12, 2022
[CVPR 2021] Official PyTorch Implementation for "Iterative Filter Adaptive Network for Single Image Defocus Deblurring"

IFAN: Iterative Filter Adaptive Network for Single Image Defocus Deblurring Checkout for the demo (GUI/Google Colab)! The GUI version might occasional

Junyong Lee 173 Dec 30, 2022
Data and codes for ACL 2021 paper: Towards Emotional Support Dialog Systems

Emotional-Support-Conversation Copyright © 2021 CoAI Group, Tsinghua University. All rights reserved. Data and codes are for academic research use onl

126 Dec 21, 2022
Robustness via Cross-Domain Ensembles

Robustness via Cross-Domain Ensembles [ICCV 2021, Oral] This repository contains tools for training and evaluating: Pretrained models Demo code Traini

Visual Intelligence & Learning Lab, Swiss Federal Institute of Technology (EPFL) 27 Dec 23, 2022
[Machine Learning Engineer Basic Guide] 부스트캠프 AI Tech - Product Serving 자료

Boostcamp-AI-Tech-Product-Serving 부스트캠프 AI Tech - Product Serving 자료 Repository 구조 part1(MLOps 개론, Model Serving, 머신러닝 프로젝트 라이프 사이클은 별도의 코드가 없으며, part

Sung Yun Byeon 269 Dec 21, 2022
A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning.

Open3DSOT A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning. The official code release of BAT an

Kangel Zenn 172 Dec 23, 2022
ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos

ComPhy This repository holds the code for the paper. ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos, (Under review) PDF Pro

29 Dec 29, 2022
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
An energy estimator for eyeriss-like DNN hardware accelerator

Energy-Estimator-for-Eyeriss-like-Architecture- An energy estimator for eyeriss-like DNN hardware accelerator This is an energy estimator for eyeriss-

HEXIN BAO 2 Mar 26, 2022
Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec

Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec This repo

Building and Urban Data Science (BUDS) Group 5 Dec 02, 2022
Pytorch implementation of various High Dynamic Range (HDR) Imaging algorithms

Deep High Dynamic Range Imaging Benchmark This repository is the pytorch impleme

Tianhong Dai 5 Nov 16, 2022
Exploring the link between uncertainty estimates obtained via "exact" Bayesian inference and out-of-distribution (OOD) detection.

Uncertainty-based OOD detection Exploring the link between uncertainty estimates obtained by "exact" Bayesian inference and out-of-distribution (OOD)

Christian Henning 1 Nov 05, 2022
FastFace: Lightweight Face Detection Framework

Light Face Detection using PyTorch Lightning

Ömer BORHAN 75 Dec 05, 2022
Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.

Stock Price Prediction Using Deep Learning Univariate Time Series Predicting stock price using historical data of a company using Neural networks for

Abdultawwab Safarji 7 Nov 27, 2022
Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers

Motionformer This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this rep

Facebook Research 192 Dec 23, 2022
The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store development.

The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store dev

George Rocha 0 Feb 03, 2022
Zero-shot Synthesis with Group-Supervised Learning (ICLR 2021 paper)

GSL - Zero-shot Synthesis with Group-Supervised Learning Figure: Zero-shot synthesis performance of our method with different dataset (iLab-20M, RaFD,

Andy_Ge 62 Dec 21, 2022
A Pytorch Implementation of a continuously rate adjustable learned image compression framework.

GainedVAE A Pytorch Implementation of a continuously rate adjustable learned image compression framework, Gained Variational Autoencoder(GainedVAE). N

39 Dec 24, 2022
Code for NeurIPS 2020 article "Contrastive learning of global and local features for medical image segmentation with limited annotations"

Contrastive learning of global and local features for medical image segmentation with limited annotations The code is for the article "Contrastive lea

Krishna Chaitanya 152 Dec 22, 2022
Data, notebooks, and articles associated with the RSNA AI Deep Learning Lab at RSNA 2021

RSNA AI Deep Learning Lab 2021 Intro Welcome Deep Learners! This document provides all the information you need to participate in the RSNA AI Deep Lea

RSNA 65 Dec 16, 2022