PyKaldi GOP-DNN on Epa-DB

Overview

PyKaldi GOP-DNN on Epa-DB

This repository has the tools to run a PyKaldi GOP-DNN algorithm on Epa-DB, a database of non-native English speech by Spanish speakers from Argentina. It uses a PyTorch acoustic model based on Kaldi's TDNN-F acoustic model. A script is provided to convert Kaldi's model to PyTorch. Kaldi's model must be downloaded separately from the Kaldi website

If you use this code or the Epa database, please cite the following paper:

J. Vidal, L. Ferrer, L. Brambilla, "EpaDB: a database for the development of pronunciation assessment systems", isca-speech

@article{vidal2019epadb,
  title={EpaDB: a database for development of pronunciation assessment systems},
  author={Vidal, Jazmin and Ferrer, Luciana and Brambilla, Leonardo},
  journal={Proc. Interspeech 2019},
  pages={589--593},
  year={2019}
}

Table of Contents

Introduction

This toolkit is meant to facilitate experimentation with Epa-DB by allowing users to run a state-of-the-art baseline system on it. Epa-DB, is a database of non-native English speech by argentinian speakers of Spanish. It is intended for research on mispronunciation detection and development of pronunciation assessment systems. The database includes recordings from 30 non-native speakers of English, 15 male and 15 female, whose first language (L1) is Spanish from Argentina (mainly of the Rio de la Plata dialect). Each speaker recorded 64 short English phrases phonetically balanced and specifically designed to globally contain all the sounds difficult to pronounce for the target population. All recordings were annotated at phone level by expert raters.

For more information on the database, please refer to the documentation or publication

If you are only looking for the EpaDB corpus, you can download it from this link.

Prerequisites

  1. Kaldi installed.

  2. TextGrid managing library installed using pip. Instructions at this link.

  3. The EpaDB database downloaded. Alternative link.

  4. Librispeech ASR model

How to install

To install this repository, do the following steps:

  1. Clone this repository:
git clone https://github.com/MarceloSancinetti/epa-gop-pykaldi.git
  1. Download Librispeech ASR acoustic model from Kaldi and move it or link it inside the top directory of the repository:
wget https://kaldi-asr.org/models/13/0013_librispeech_v1_chain.tar.gz
tar -zxvf 0013_librispeech_v1_chain.tar.gz
  1. Convert the acoustic model to text format:
nnet3-copy --binary=false exp/chain_cleaned/tdnn_1d_sp/final.mdl exp/chain_cleaned/tdnn_1d_sp/final.txt
  1. Install the requirements:
pip install -r requirements.txt
  1. Install PyKaldi:

Follow instructions from https://github.com/pykaldi/pykaldi#installation

  1. Convert the acoustic model to Pytorch:
python convert_chain_to_pytorch.py
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
This is the latest version of the PULP SDK

PULP-SDK This is the latest version of the PULP SDK, which is under active development. The previous (now legacy) version, which is no longer supporte

78 Dec 07, 2022
LBBA-boosted WSOD

LBBA-boosted WSOD Summary Our code is based on ruotianluo/pytorch-faster-rcnn and WSCDN Sincerely thanks for your resources. Newer version of our code

Martin Dong 20 Sep 19, 2022
This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector of the financial market.

GPlearn_finiance_stock_futures_extension This implementation contains the application of GPlearn's symbolic transformer on a commodity futures sector

Chengwei <a href=[email protected]"> 189 Dec 25, 2022
Release of SPLASH: Dataset for semantic parse correction with natural language feedback in the context of text-to-SQL parsing

SPLASH: Semantic Parsing with Language Assistance from Humans SPLASH is dataset for the task of semantic parse correction with natural language feedba

Microsoft Research - Language and Information Technologies (MSR LIT) 35 Oct 31, 2022
Continuous Time LiDAR odometry

CT-ICP: Elastic SLAM for LiDAR sensors This repository implements the SLAM CT-ICP (see our article), a lightweight, precise and versatile pure LiDAR o

385 Dec 29, 2022
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
A programming language written with python

Kaoft A programming language written with python How to use A simple Hello World: c="Hello World" c Output: "Hello World" Operators: a=12

1 Jan 24, 2022
This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities

MLOps with Vertex AI This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities. The ex

Google Cloud Platform 238 Dec 21, 2022
Natural Intelligence is still a pretty good idea.

Human Learn Machine Learning models should play by the rules, literally. Project Goal Back in the old days, it was common to write rule-based systems.

vincent d warmerdam 641 Dec 26, 2022
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
Official PyTorch implementation of "AASIST: Audio Anti-Spoofing using Integrated Spectro-Temporal Graph Attention Networks"

AASIST This repository provides the overall framework for training and evaluating audio anti-spoofing systems proposed in 'AASIST: Audio Anti-Spoofing

Clova AI Research 56 Jan 02, 2023
Implementation of FSGNN

FSGNN Implementation of FSGNN. For more details, please refer to our paper Experiments were conducted with following setup: Pytorch: 1.6.0 Python: 3.8

19 Dec 05, 2022
An open source Jetson Nano baseboard and tools to design your own.

My Jetson Nano Baseboard This basic baseboard gives the user the foundation and the flexibility to design their own baseboard for the Jetson Nano. It

NVIDIA AI IOT 57 Dec 29, 2022
Embodied Intelligence via Learning and Evolution

Embodied Intelligence via Learning and Evolution This is the code for the paper Embodied Intelligence via Learning and Evolution Agrim Gupta, Silvio S

Agrim Gupta 111 Dec 13, 2022
GAN Image Generator and Characterwise Image Recognizer with python

MODEL SUMMARY 모델의 구조는 크게 6단계로 나뉩니다. STEP 0: Input Image Predict 할 이미지를 모델에 입력합니다. STEP 1: Make Black and White Image STEP 1 은 입력받은 이미지의 글자를 흑색으로, 배경을

Juwan HAN 1 Feb 09, 2022
Pytorch implementation of FlowNet by Dosovitskiy et al.

FlowNetPytorch Pytorch implementation of FlowNet by Dosovitskiy et al. This repository is a torch implementation of FlowNet, by Alexey Dosovitskiy et

Clément Pinard 762 Jan 02, 2023
Snscrape-jsonl-urls-extractor - Extracts urls from jsonl produced by snscrape

snscrape-jsonl-urls-extractor extracts urls from jsonl produced by snscrape Usag

1 Feb 26, 2022
Code for the paper "Next Generation Reservoir Computing"

Next Generation Reservoir Computing This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written

OSU QuantInfo Lab 105 Dec 20, 2022
Codes for "Template-free Prompt Tuning for Few-shot NER".

EntLM The source codes for EntLM. Dependencies: Cuda 10.1, python 3.6.5 To install the required packages by following commands: $ pip3 install -r requ

77 Dec 27, 2022