DeepLab resnet v2 model in pytorch

Overview

pytorch-deeplab-resnet

DeepLab resnet v2 model implementation in pytorch.

The architecture of deepLab-ResNet has been replicated exactly as it is from the caffe implementation. This architecture calculates losses on input images over multiple scales ( 1x, 0.75x, 0.5x ). Losses are calculated individually over these 3 scales. In addition to these 3 losses, one more loss is calculated after merging the output score maps on the 3 scales. These 4 losses are added to calculate the total loss.

Updates

18 July 2017

  • One more evaluation script is added, evalpyt2.py. The old evaluation script evalpyt.py uses a different methodoloy to take mean of IOUs than the one used by authors. Results section has been updated to incorporate this change.

24 June 2017

  • Now, weights over the 3 scales ( 1x, 0.75x, 0.5x ) are shared as in the caffe implementation. Previously, each of the 3 scales had seperate weights. Results are almost same after making this change (more in the results section). However, the size of the trained .pth model has reduced significantly. Memory occupied on GPU(11.9 GB) and time taken (~3.5 hours) during training are same as before. Links to corresponding .pth files have been updated.
  • Custom data can be used to train pytorch-deeplab-resnet using train.py, flag --NoLabels (total number of labels in training data) has been added to train.py and evalpyt.py for this purpose. Please note that labels should be denoted by contiguous values (starting from 0) in the ground truth images. For eg. if there are 7 (no_labels) different labels, then each ground truth image must have these labels as 0,1,2,3,...6 (no_labels-1).

The older version (prior to 24 June 2017) is available here.

Usage

Note that this repository has been tested with python 2.7 only.

Converting released caffemodel to pytorch model

To convert the caffemodel released by authors, download the deeplab-resnet caffemodel (train_iter_20000.caffemodel) pretrained on VOC into the data folder. After that, run

python convert_deeplab_resnet.py

to generate the corresponding pytorch model file (.pth). The generated .pth snapshot file can be used to get the exsct same test performace as offered by using the caffemodel in caffe (as shown by numbers in results section). If you do not want to generate the .pth file yourself, you can download it here.

To run convert_deeplab_resnet.py, deeplab v2 caffe and pytorch (python 2.7) are required.

If you want to train your model in pytorch, move to the next section.

Training

Step 1: Convert init.caffemodel to a .pth file: init.caffemodel contains MS COCO trained weights. We use these weights as initilization for all but the final layer of our model. For the last layer, we use random gaussian with a standard deviation of 0.01 as the initialization. To convert init.caffemodel to a .pth file, run (or download the converted .pth here)

python init_net_surgery.py

To run init_net_surgery .py, deeplab v2 caffe and pytorch (python 2.7) are required.

Step 2: Now that we have our initialization, we can train deeplab-resnet by running,

python train.py

To get a description of each command-line arguments, run

python train.py -h

To run train.py, pytorch (python 2.7) is required.

By default, snapshots are saved in every 1000 iterations in the data/snapshots. The following features have been implemented in this repository -

  • Training regime is the same as that of the caffe implementation - SGD with momentum is used, along with the poly lr decay policy. A weight decay has been used. The last layer has 10 times the learning rate of other layers.
  • The iter_size parameter of caffe has been implemented, effectively increasing the batch_size to batch_size times iter_size
  • Random flipping and random scaling of input has been used as data augmentation. The caffe implementation uses 4 fixed scales (0.5,0.75,1,1.25,1.5) while in the pytorch implementation, for each iteration scale is randomly picked in the range - [0.5,1.3].
  • The boundary label (255 in ground truth labels) has not been ignored in the loss function in the current version, instead it has been merged with the background. The ignore_label caffe parameter would be implemented in the future versions. Post processing using CRF has not been implemented.
  • Batchnorm parameters are kept fixed during training. Also, caffe setting use_global_stats = True is reproduced during training. Running mean and variance are not calculated during training.

When run on a Nvidia Titan X GPU, train.py occupies about 11.9 GB of memory.

Evaluation

Evaluation of the saved models can be done by running

python evalpyt.py

To get a description of each command-line arguments, run

python evalpyt.py -h

Results

When trained on VOC augmented training set (with 10582 images) using MS COCO pretrained initialization in pytorch, we get a validation performance of 72.40%(evalpyt2.py, on VOC). The corresponding .pth file can be downloaded here. This is in comparision to 75.54% that is acheived by using train_iter_20000.caffemodel released by authors, which can be replicated by running this file . The .pth model converted from .caffemodel using the first section also gives 75.54% mean IOU. A previous version of this file reported mean IOU of 78.48% on the pytorch trained model which is caclulated in a different way (evalpyt.py, Mean IOU is calculated for each image and these values are averaged together. This way of calculating mean IOU is different than the one used by authors).

To replicate this performance, run

train.py --lr 0.00025 --wtDecay 0.0005 --maxIter 20000 --GTpath <train gt images path here> --IMpath <train images path here> --LISTpath data/list/train_aug.txt

Dataset

The model presented in the results section was trained using the augmented VOC train set which was released by this paper. You may download this augmented data directly from here.

Note that this code can be used to train pytorch-deeplab-resnet model for other datasets also.

Acknowledgement

A part of the code has been borrowed from https://github.com/ry/tensorflow-resnet.

Owner
Isht Dwivedi
Isht Dwivedi
Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation

NeuralPDE NeuralPDE.jl is a solver package which consists of neural network solvers for partial differential equations using scientific machine learni

SciML Open Source Scientific Machine Learning 680 Jan 02, 2023
Unofficial reimplementation of ECAPA-TDNN for speaker recognition (EER=0.86 for Vox1_O when train only in Vox2)

Introduction This repository contains my unofficial reimplementation of the standard ECAPA-TDNN, which is the speaker recognition in VoxCeleb2 dataset

Tao Ruijie 277 Dec 31, 2022
CL-Gym: Full-Featured PyTorch Library for Continual Learning

CL-Gym: Full-Featured PyTorch Library for Continual Learning CL-Gym is a small yet very flexible library for continual learning research and developme

Iman Mirzadeh 36 Dec 25, 2022
Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021.

Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021. Figure 1: In the process of motion capture (mocap), some joints or even the whole human

Shinny cui 3 Oct 31, 2022
improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

310 Dec 28, 2022
The implementation of our CIKM 2021 paper titled as: "Cross-Market Product Recommendation"

FOREC: A Cross-Market Recommendation System This repository provides the implementation of our CIKM 2021 paper titled as "Cross-Market Product Recomme

Hamed Bonab 16 Sep 12, 2022
TensorFlow code for the neural network presented in the paper: "Structural Language Models of Code" (ICML'2020)

SLM: Structural Language Models of Code This is an official implementation of the model described in: "Structural Language Models of Code" [PDF] To ap

73 Nov 06, 2022
Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting

Autoformer (NeurIPS 2021) Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting Time series forecasting is a c

THUML @ Tsinghua University 847 Jan 08, 2023
Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Ibai Gorordo 99 Dec 31, 2022
Code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language"

The repository provides the source code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language" submitted to HA

Sherzod Hakimov 3 Aug 04, 2022
Pointer networks Tensorflow2

Pointer networks Tensorflow2 原文:https://arxiv.org/abs/1506.03134 仅供参考与学习,内含代码备注 环境 tensorflow==2.6.0 tqdm matplotlib numpy 《pointer networks》阅读笔记 应用场景

HUANG HAO 7 Oct 27, 2022
Denoising Normalizing Flow

Denoising Normalizing Flow Christian Horvat and Jean-Pascal Pfister 2021 We combine Normalizing Flows (NFs) and Denoising Auto Encoder (DAE) by introd

CHrvt 17 Oct 15, 2022
N-RPG - Novel role playing game da turfu

N-RPG Ce README sera la page de garde du projet. Contenu Il contiendra la présen

4 Mar 15, 2022
(CVPR 2022 Oral) Official implementation for "Surface Representation for Point Clouds"

RepSurf - Surface Representation for Point Clouds [CVPR 2022 Oral] By Haoxi Ran* , Jun Liu, Chengjie Wang ( * : corresponding contact) The pytorch off

Haoxi Ran 264 Dec 23, 2022
Fast and customizable reconnaissance workflow tool based on simple YAML based DSL.

Fast and customizable reconnaissance workflow tool based on simple YAML based DSL, with support of notifications and distributed workload of that work

Américo Júnior 3 Mar 11, 2022
Notification Triggers for Python

Notipyer Notification triggers for Python Send async email notifications via Python. Get updates/crashlogs from your scripts with ease. Installation p

Chirag Jain 17 May 16, 2022
My published benchmark for a Kaggle Simulations Competition

Lux AI Working Title Bot Please refer to the Kaggle notebook for the comment section. The comment section contains my explanation on my code structure

Tong Hui Kang 29 Aug 22, 2022
DANet for Tabular data classification/ regression.

Deep Abstract Networks A PyTorch code implemented for the submission DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Do

Ronnie Rocket 55 Sep 14, 2022
Code for CVPR 2021 oral paper "Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts"

Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts The rapid progress in 3D scene understanding has come with growing dem

Facebook Research 182 Dec 30, 2022
Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays In this repo, you will find the instructions on how to requ

Intelligent Vision Research Lab 4 Jul 21, 2022