Deep Learning Slide Captcha

Overview

滑动验证码深度学习识别

本项目使用深度学习 YOLOV3 模型来识别滑动验证码缺口,基于 https://github.com/eriklindernoren/PyTorch-YOLOv3 修改。

只需要几百张缺口标注图片即可训练出精度高的识别模型,识别效果样例:

克隆项目

运行命令:

git clone https://github.com/Python3WebSpider/DeepLearningSlideCaptcha.git

数据准备

使用 LabelImg 工具标注自行标注一批数据,大约 200 张以上即可训练出不错的效果。

LabelImg:https://github.com/tzutalin/labelImg

标注要求:

  • 圈出验证码目标滑块区域的完整完整矩形,无需标注源滑块。
  • 目标矩形命名为 target 这个类别。
  • 建议使用 LabelImg 的快捷键提高标注效率。

环境准备

建议在 GPU 环境和虚拟 Python 环境下执行如下命令:

pip3 install -r requirements.txt

预训练模型下载

YOLOV3 的训练要加载预训练模型才能有不错的训练效果,预训练模型下载:

bash prepare.sh

下载完成之后会在 weights 文件夹下出现模型权重文件,供训练使用。

训练

本项目已经提供了标注好的数据集,在 data/captcha,可以直接使用。

如果要训练自己的数据,数据格式准备见:https://github.com/eriklindernoren/PyTorch-YOLOv3#train-on-custom-dataset

当前数据训练脚本:

bash train.sh

实测 P100 训练时长约 15 秒一个 epoch,大约几分钟即可训练出较好效果。

测试

训练完毕之后会在 checkpoints 文件夹生成 pth 文件,可直接使用模型来预测生成标注结果。

此时 checkpoints 文件夹会生成训练好的 pth 文件。

当前数据测试脚本:

sh detect.sh

该脚本会读取 captcha 下的 test 文件夹所有图片,并将处理后的结果输出到 test 文件夹。

运行结果样例:

Performing object detection:
        + Batch 0, Inference Time: 0:00:00.044223
        + Batch 1, Inference Time: 0:00:00.028566
        + Batch 2, Inference Time: 0:00:00.029764
        + Batch 3, Inference Time: 0:00:00.032430
        + Batch 4, Inference Time: 0:00:00.033373
        + Batch 5, Inference Time: 0:00:00.027861
        + Batch 6, Inference Time: 0:00:00.031444
        + Batch 7, Inference Time: 0:00:00.032110
        + Batch 8, Inference Time: 0:00:00.029131

Saving images:
(0) Image: 'data/captcha/test/captcha_4497.png'
        + Label: target, Conf: 0.99999
(1) Image: 'data/captcha/test/captcha_4498.png'
        + Label: target, Conf: 0.99999
(2) Image: 'data/captcha/test/captcha_4499.png'
        + Label: target, Conf: 0.99997
(3) Image: 'data/captcha/test/captcha_4500.png'
        + Label: target, Conf: 0.99999
(4) Image: 'data/captcha/test/captcha_4501.png'
        + Label: target, Conf: 0.99997
(5) Image: 'data/captcha/test/captcha_4502.png'
        + Label: target, Conf: 0.99999
(6) Image: 'data/captcha/test/captcha_4503.png'
        + Label: target, Conf: 0.99997
(7) Image: 'data/captcha/test/captcha_4504.png'
        + Label: target, Conf: 0.99998
(8) Image: 'data/captcha/test/captcha_4505.png'
        + Label: target, Conf: 0.99998

样例结果:

协议

本项目基于开源 GNU 协议 ,另外本项目不提供任何有关滑动轨迹相关模拟和 JavaScript 逆向分析方案。

本项目仅供学习交流使用,请勿用于非法用途,本人不承担任何法律责任。

如有侵权请联系个人删除,谢谢。

Owner
Python3WebSpider
Python3WebSpider
This porject is intented to build the most accurate model for predicting the porbability of loan default

Estimating-Loan-Default-Probability IBA ML2 Mid-project / Kaggle Competition This porject is intented to build the most accurate model for predicting

Adil Gahramanov 1 Jan 24, 2022
Springer Link Download Module for Python

♞ pupalink A simple Python module to search and download books from SpringerLink. 🧪 This project is still in an early stage of development. Expect br

Pupa Corp. 18 Nov 21, 2022
(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

xxxnell 656 Dec 30, 2022
JugLab 33 Dec 30, 2022
Image classification for projects and researches

This is a tool to help you quickly solve classification problems including: data analysis, training, report results and model explanation.

Nguyễn Trường Lâu 2 Dec 27, 2021
[arXiv22] Disentangled Representation Learning for Text-Video Retrieval

Disentangled Representation Learning for Text-Video Retrieval This is a PyTorch implementation of the paper Disentangled Representation Learning for T

Qiang Wang 49 Dec 18, 2022
An executor that loads ONNX models and embeds documents using the ONNX runtime.

ONNXEncoder An executor that loads ONNX models and embeds documents using the ONNX runtime. Usage via Docker image (recommended) from jina import Flow

Jina AI 2 Mar 15, 2022
Multi-objective constrained optimization for energy applications via tree ensembles

Multi-objective constrained optimization for energy applications via tree ensembles

C⚙G - Imperial College London 1 Nov 19, 2021
Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions"

ModelNet-C Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions". For the latest updates, see: sites.google.com

Jiawei Ren 45 Dec 28, 2022
Experiment about Deep Person Re-identification with EfficientNet-v2

We evaluated the baseline with Resnet50 and Efficienet-v2 without using pretrained models. Also Resnet50-IBN-A and Efficientnet-v2 using pretrained on ImageNet. We used two datasets: Market-1501 and

lan.nguyen2k 77 Jan 03, 2023
MoveNetを用いたPythonでの姿勢推定のデモ

MoveNet-Python-Example MoveNetのPythonでの動作サンプルです。 ONNXに変換したモデルも同梱しています。変換自体を試したい方はMoveNet_tf2onnx.ipynbを使用ください。 2021/08/24時点でTensorFlow Hubで提供されている以下モデ

KazuhitoTakahashi 38 Dec 17, 2022
[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning

Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral] By Zhicheng Huang*, Zhaoyang Zeng*, Yupan H

Multimedia Research 196 Dec 13, 2022
Trying to understand alias-free-gan.

alias-free-gan-explanation Trying to understand alias-free-gan in my own way. [Chinese Version 中文版本] CC-BY-4.0 License. Tzu-Heng Lin motivation of thi

Tzu-Heng Lin 12 Mar 17, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient

Zemin Liu 4 Jun 18, 2022
《Towards High Fidelity Face Relighting with Realistic Shadows》(CVPR 2021)

Towards High Fidelity Face-Relighting with Realistic Shadows Andrew Hou, Ze Zhang, Michel Sarkis, Ning Bi, Yiying Tong, Xiaoming Liu. In CVPR, 2021. T

114 Dec 10, 2022
Realtime micro-expression recognition using OpenCV and PyTorch

Micro-expression Recognition Realtime micro-expression recognition from scratch using OpenCV and PyTorch Try it out with a webcam or video using the e

Irfan 35 Dec 05, 2022
Machine Learning Platform for Kubernetes

Reproduce, Automate, Scale your data science. Welcome to Polyaxon, a platform for building, training, and monitoring large scale deep learning applica

polyaxon 3.2k Dec 23, 2022
Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent

Narya The Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent. This repository

Paul Garnier 121 Dec 30, 2022
Multiple style transfer via variational autoencoder

ST-VAE Multiple style transfer via variational autoencoder By Zhi-Song Liu, Vicky Kalogeiton and Marie-Paule Cani This repo only provides simple testi

13 Oct 29, 2022