A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization

Overview

sam.pytorch

A PyTorch implementation of Sharpness-Aware Minimization for Efficiently Improving Generalization ( Foret+2020) Paper, Official implementation .

Requirements

  • Python>=3.8
  • PyTorch>=1.7.1

To run the example, you further need

  • homura by pip install -U homura-core==2020.12.0
  • chika by pip install -U chika

Example

python cifar10.py [--optim.name {sam,sgd}] [--model {renst20, wrn28_2}] [--optim.rho 0.05]

Results: Test Accuracy (CIFAR-10)

Model SAM SGD
ResNet-20 93.5 93.2
WRN28-2 95.8 95.4
ResNeXT29 96.4 95.8

SAM needs double forward passes per each update, thus training with SAM is slower than training with SGD. In case of ResNet-20 training, 80 mins vs 50 mins on my environment. Additional options --use_amp --jit_model may slightly accelerates the training.

Usage

SAMSGD can be used as a drop-in replacement of PyTorch optimizers with closures. Also, it is compatible with lr_scheduler and has state_dict and load_state_dict.

from sam import SAMSGD

optimizer = SAMSGD(model.parameters(), lr=1e-1, rho=0.05)

for input, target in dataset:
    def closure():
        optimizer.zero_grad()
        output = model(input)
        loss = loss_f(output, target)
        loss.backward()
        return loss


    loss = optimizer.step(closure)

Citation

@ARTICLE{2020arXiv201001412F,
    author = {{Foret}, Pierre and {Kleiner}, Ariel and {Mobahi}, Hossein and {Neyshabur}, Behnam},
    title = "{Sharpness-Aware Minimization for Efficiently Improving Generalization}",
    year = 2020,
    eid = {arXiv:2010.01412},
    eprint = {2010.01412},
}

@software{sampytorch
    author = {Ryuichiro Hataya},
    titile = {sam.pytorch},
    url    = {https://github.com/moskomule/sam.pytorch},
    year   = {2020}
}
Owner
Ryuichiro Hataya
PhD student at UTokyo and RA at RIKEN AIP / focusing on DL and ML
Ryuichiro Hataya
A framework for Quantification written in Python

QuaPy QuaPy is an open source framework for quantification (a.k.a. supervised prevalence estimation, or learning to quantify) written in Python. QuaPy

41 Dec 14, 2022
Next-gen Rowhammer fuzzer that uses non-uniform, frequency-based patterns.

Blacksmith Rowhammer Fuzzer This repository provides the code accompanying the paper Blacksmith: Scalable Rowhammering in the Frequency Domain that is

Computer Security Group @ ETH Zurich 173 Nov 16, 2022
Genshin-assets - 👧 Public documentation & static assets for Genshin Impact data.

genshin-assets This repo provides easy access to the Genshin Impact assets, primarily for use on static sites. Sources Genshin Optimizer - An Artifact

Zerite Development 5 Nov 22, 2022
Bayesian Optimization using GPflow

Note: This package is for use with GPFlow 1. For Bayesian optimization using GPFlow 2 please see Trieste, a joint effort with Secondmind. GPflowOpt GP

GPflow 257 Dec 26, 2022
The sixth place winning solution (6/220) in 2021 Gaofen Challenge.

SwinTransformer + OBBDet The sixth place winning solution (6/220) in the track of Fine-grained Object Recognition in High-Resolution Optical Images, 2

ming71 46 Dec 02, 2022
Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Demetri Pananos 9 Oct 04, 2022
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which reaches a median HNS of 205.7 after only 10M frames (the original Rainbow from Hessel et al. 2017 re

Dominik Schmidt 31 Dec 21, 2022
Analyzing basic network responses to novel classes

novelty-detection Analyzing how AlexNet responds to novel classes with varying degrees of similarity to pretrained classes from ImageNet. If you find

Noam Eshed 34 Oct 02, 2022
ShapeGlot: Learning Language for Shape Differentiation

ShapeGlot: Learning Language for Shape Differentiation Created by Panos Achlioptas, Judy Fan, Robert X.D. Hawkins, Noah D. Goodman, Leonidas J. Guibas

Panos 32 Dec 23, 2022
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
A Runtime method overload decorator which should behave like a compiled language

strongtyping-pyoverload A Runtime method overload decorator which should behave like a compiled language there is a override decorator from typing whi

20 Oct 31, 2022
Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

Wang jiahao 3 Oct 31, 2022
Medical Insurance Cost Prediction using Machine earning

Medical-Insurance-Cost-Prediction-using-Machine-learning - Here in this project, I will use regression analysis to predict medical insurance cost for people in different regions, and based on several

1 Dec 27, 2021
Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2

CoaDTI Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2 Abstract Environment The test was conducted i

Layne_Huang 7 Nov 14, 2022
Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark

This dataset is a large-scale dataset for moving object detection and tracking in satellite videos, which consists of 40 satellite videos captured by Jilin-1 satellite platforms.

Qingyong 87 Dec 22, 2022
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma This repo provi

Jingtao Zhan 99 Dec 27, 2022
We simulate traveling back in time with a modern camera to rephotograph famous historical subjects.

[SIGGRAPH Asia 2021] Time-Travel Rephotography [Project Website] Many historical people were only ever captured by old, faded, black and white photos,

298 Jan 02, 2023
PaSST: Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
NHL 94 AI contests

nhl94-ai The end goals of this project is to: Train Models that play NHL 94 Support AI vs AI contests in NHL 94 Provide an improved AI opponent for NH

Mathieu Poliquin 2 Dec 06, 2021