A brand new hub for Scene Graph Generation methods based on MMdetection (2021). The pipeline of from detection, scene graph generation to downstream tasks (e.g., image cpationing) is supported. Pytorch version implementation of HetH (ECCV 2020) and TopicSG (ICCV 2021) is included.

Overview

MMSceneGraph

LICENSE Python PyTorch

Introduction

MMSceneneGraph is an open source code hub for scene graph generation as well as supporting downstream tasks based on the scene graph on PyTorch. The frontend object detector is supported by open-mmlab/mmdetection.

demo image

Major features

  • Modular design

    We decompose the framework into different components and one can easily construct a customized scene graph generation framework by combining different modules.

  • Support of multiple frameworks out of box

    The toolbox directly supports popular and contemporary detection frameworks, e.g. Faster RCNN, Mask RCNN, etc.

  • Visualization support

    The visualization of the groundtruth/predicted scene graph is integrated into the toolbox.

License

This project is released under the MIT license.

Changelog

Please refer to CHANGELOG.md for details.

Benchmark and model zoo

The original object detection results and models provided by mmdetection are available in the model zoo. The models for the scene graph generation are temporarily unavailable yet.

Supported methods and Datasets

Supported SGG (VRD) methods:

  • Neural Motifs (CVPR'2018)
  • VCTree (CVPR'2019)
  • TDE (CVPR'2020)
  • VTransE (CVPR'2017)
  • IMP (CVPR'2017)
  • KERN (CVPR'2019)
  • GPSNet (CVPR'2020)
  • HetH (ECCV'2020, ours)
  • TopicSG (ICCV'2021, ours)

Supported saliency object detection methods:

  • R3Net (IJCAI'2018)
  • SCRN (ICCV'2019)

Supported image captioning methods:

  • bottom-up (CVPR'2018)
  • XLAN (CVPR'2020)

Supported datasets:

  • Visual Genome: VG150 (CVPR'2017)
  • VRD (ECCV'2016)
  • Visual Genome: VG200/VG-KR (ours)
  • MSCOCO (for object detection, image caption)
  • RelCap (from VG and COCO, ours)

Installation

As our project is built on mmdetection 1.x (which is a bit different from their current master version 2.x), please refer to INSTALL.md. If you want to use mmdetection 2.x, please refer to mmdetection/get_start.md.

Getting Started

Please refer to GETTING_STARTED.md for using the projects. We will update it constantly.

Acknowledgement

We appreciate the contributors of the mmdetection project and Scene-Graph-Benchmark.pytorch which inspires our design.

Citation

If you find this code hub or our works useful in your research works, please consider citing:

@inproceedings{wang2021topic,
  title={Topic Scene Graph Generation by Attention Distillation from Caption},
  author={Wang, Wenbin and Wang, Ruiping and Chen, Xilin},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
  pages={15900--15910},
  month = {October},
  year={2021}
}


@inproceedings{wang2020sketching,
  title={Sketching Image Gist: Human-Mimetic Hierarchical Scene Graph Generation},
  author={Wang, Wenbin and Wang, Ruiping and Shan, Shiguang and Chen, Xilin},
  booktitle={Proceedings of European Conference on Computer Vision (ECCV)},
  pages={222--239},
  year={2020},
  volume={12358},
  doi={10.1007/978-3-030-58601-0_14},
  publisher={Springer}
}

@InProceedings{Wang_2019_CVPR,
author = {Wang, Wenbin and Wang, Ruiping and Shan, Shiguang and Chen, Xilin},
title = {Exploring Context and Visual Pattern of Relationship for Scene Graph Generation},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
pages = {8188-8197},
month = {June},
address = {Long Beach, California, USA},
doi = {10.1109/CVPR.2019.00838},
year = {2019}
}
Owner
Kenneth-Wong
http://www.kennethwong.tech/
Kenneth-Wong
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022
Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)

Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild Akash Sengupta, Ignas Budvytis, Robert

Akash Sengupta 149 Dec 14, 2022
Multilingual Image Captioning

Multilingual Image Captioning Authors: Bhavitvya Malik, Gunjan Chhablani Demo Link: https://huggingface.co/spaces/flax-community/multilingual-image-ca

Gunjan Chhablani 32 Nov 25, 2022
Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses‘

Graph-based joint model with Nonignorable Missingness (GNM) This is a Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Lear

Fan Zhou 2 Apr 17, 2022
dataset for ECCV 2020 "Motion Capture from Internet Videos"

Motion Capture from Internet Videos Motion Capture from Internet Videos Junting Dong*, Qing Shuai*, Yuanqing Zhang, Xian Liu, Xiaowei Zhou, Hujun Bao

ZJU3DV 98 Dec 07, 2022
This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer Capacitor domain using text similarity indexes: An experimental analysis "

kwd-extraction-study This repository is maintained for the scientific paper tittled " Study of keyword extraction techniques for Electric Double Layer

ping 543f 1 Dec 05, 2022
Assessing syntactic abilities of BERT

BERT-Syntax Assesing the syntactic abilities of BERT. What Evaluate Google's BERT-Base and BERT-Large models on the syntactic agreement datasets from

Yoav Goldberg 147 Aug 02, 2022
WTTE-RNN a framework for churn and time to event prediction

WTTE-RNN Weibull Time To Event Recurrent Neural Network A less hacky machine-learning framework for churn- and time to event prediction. Forecasting p

Egil Martinsson 727 Dec 28, 2022
Captcha-tensorflow - Image Captcha Solving Using TensorFlow and CNN Model. Accuracy 90%+

Captcha Solving Using TensorFlow Introduction Solve captcha using TensorFlow. Learn CNN and TensorFlow by a practical project. Follow the steps, run t

Jackon Yang 869 Jan 06, 2023
🛠️ SLAMcore SLAM Utilities

slamcore_utils Description This repo contains the slamcore-setup-dataset script. It can be used for installing a sample dataset for offline testing an

SLAMcore 7 Aug 04, 2022
JAX-based neural network library

Haiku: Sonnet for JAX Overview | Why Haiku? | Quickstart | Installation | Examples | User manual | Documentation | Citing Haiku What is Haiku? Haiku i

DeepMind 2.3k Jan 04, 2023
Easily Process a Batch of Cox Models

ezcox: Easily Process a Batch of Cox Models The goal of ezcox is to operate a batch of univariate or multivariate Cox models and return tidy result. ⏬

Shixiang Wang 15 May 23, 2022
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI

ColossalAI-Examples This repository contains examples of training models with Co

HPC-AI Tech 185 Jan 09, 2023
[CVPR 2021] Few-shot 3D Point Cloud Semantic Segmentation

Few-shot 3D Point Cloud Semantic Segmentation Created by Na Zhao from National University of Singapore Introduction This repository contains the PyTor

117 Dec 27, 2022
Codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Background Mixing

Contrast and Mix (CoMix) The repository contains the codes for the paper Contrast and Mix: Temporal Contrastive Video Domain Adaptation with Backgroun

Computer Vision and Intelligence Research (CVIR) 13 Dec 10, 2022
Code for KDD'20 "An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph"

Heterogeneous INteract and aggreGatE (GraphHINGE) This is a pytorch implementation of GraphHINGE model. This is the experiment code in the following w

Jinjiarui 69 Nov 24, 2022
Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU A Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/abs/211

Fuhang 5 Jan 18, 2022
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

keven 198 Dec 20, 2022