Code for the ICCV'21 paper "Context-aware Scene Graph Generation with Seq2Seq Transformers"

Overview

ICCV'21 Context-aware Scene Graph Generation with Seq2Seq Transformers

Authors: Yichao Lu*, Himanshu Rai*, Cheng Chang*, Boris Knyazev†, Guangwei Yu, Shashank Shekhar†, Graham W. Taylor†, Maksims Volkovs

  • * Denotes equal contribution
  • † University of Guelph / Vector Institute

Prerequisites and Environment

  • pytorch-gpu 1.13.1
  • numpy 1.16.0
  • tqdm

All experiments were conducted on a 20-core Intel(R) Xeon(R) CPU E5-2630 v4 @2.20GHz and 4 NVIDIA V100 GPUs with 32GB GPU memory.

Dataset

Visual Genome

Download it here. Unzip it under the data folder. You should see a vg folder unzipped there. It contains .json annotations that suit the dataloader used in this repo.

Visual Relation Detection

See Images:VRD

Images

Visual Genome

Create a folder for all images:

# ROOT=path/to/cloned/repository
cd $ROOT/data/vg
mkdir VG_100K

Download Visual Genome images from the official page. Unzip all images (part 1 and part 2) into VG_100K/. There should be a total of 108249 files.

Visual Relation Detection

Create the vrd folder under data:

# ROOT=path/to/cloned/repository
cd $ROOT/data/vrd

Download the original annotation json files from here and unzip json_dataset.zip here. The images can be downloaded from here. Unzip sg_dataset.zip to create an sg_dataset folder in data/vrd. Next run the preprocessing scripts:

cd $ROOT
python tools/rename_vrd_with_numbers.py
python tools/convert_vrd_anno_to_coco_format.py

rename_vrd_with_numbers.py converts all non-jpg images (some images are in png or gif) to jpg, and renames them in the {:012d}.jpg format (e.g., "000000000001.jpg"). It also creates new relationship annotations other than the original ones. This is mostly to make things easier for the dataloader. The filename mapping from the original is stored in data/vrd/*_fname_mapping.json where "*" is either "train" or "val".

convert_vrd_anno_to_coco_format.py creates object detection annotations from the new annotations generated above, which are required by the dataloader during training.

Pre-trained Object Detection Models

Download pre-trained object detection models here. Unzip it under the root directory. Note: We do not include code for training object detectors. Please refer to the "(Optional) Training Object Detection Models" section in Large-Scale-VRD.pytorch for this.

Directory Structure

The final directories should look like:

|-- data
|   |-- detections_train.json
|   |-- detections_val.json
|   |-- new_annotations_train.json
|   |-- new_annotations_val.json
|   |-- objects.json
|   |-- predicates.json
|-- evaluation
|-- output
|   |-- pair_predicate_dict.dat
|   |-- train_data.dat
|   |-- valid_data.dat
|-- config.py
|-- core.py
|-- data_utils.py
|-- evaluation_utils.py
|-- feature_utils.py
|-- file_utils.py
|-- preprocess.py
|-- trainer.py
|-- transformer.py

Evaluating Pre-trained Relationship Detection models

DO NOT CHANGE anything in the provided config files(configs/xx/xxxx.yaml) even if you want to test with less or more than 8 GPUs. Use the environment variable CUDA_VISIBLE_DEVICES to control how many and which GPUs to use. Remove the --multi-gpu-test for single-gpu inference.

Visual Genome

NOTE: May require at least 64GB RAM to evaluate on the Visual Genome test set

We use three evaluation metrics for Visual Genome:

  1. SGDET: predict all the three labels and two boxes
  2. SGCLS: predict subject, object and predicate labels given ground truth subject and object boxes
  3. PRDCLS: predict predicate labels given ground truth subject and object boxes and labels

Training Scene Graph Generation Models

With the following command lines, the training results (models and logs) should be in $ROOT/Outputs/xxx/ where xxx is the .yaml file name used in the command without the ".yaml" extension. If you want to test with your trained models, simply run the test commands described above by setting --load_ckpt as the path of your trained models.

Visual Relation Detection

To train our scene graph generation model on the VRD dataset, run

python preprocess.py

python trainer.py --num-encoder-layers 4 --num-decoder-layers 2 --nhead 4 --num-epochs 500 --learning-rate 1e-3

python preprocess_evaluation.py

python write_prediction.py

mv prediction.txt evaluation/vrd/

cd evaluation/vrd

python run_all_for_vrd.py prediction.txt

Visual Genome

To train our scene graph generation model on the VG dataset, download the json files from https://visualgenome.org/api/v0/api_home.html, put the extracted files under data and then run

python preprocess.py

python trainer.py --num-encoder-layers 4 --num-decoder-layers 2 --nhead 4 --num-epochs 2000 --learning-rate 1e-3

python preprocess_evaluation.py

python write_prediction.py

mv prediction.txt evaluation/vg/

cd evaluation/vg

python run_all.py prediction.txt

Acknowledgements

This repository uses code based on the ContrastiveLosses4VRD Ji Zhang, Neural-Motifs source code from Rowan Zellers.

Citation

If you find this code useful in your research, please cite the following paper:

@inproceedings{lu2021seq2seq,
  title={Context-aware Scene Graph Generation with Seq2Seq Transformers},
  author={Yichao Lu, Himanshu Rai, Jason Chang, Boris Knyazev, Guangwei Yu, Shashank Shekhar, Graham W. Taylor, Maksims Volkovs},
  booktitle={ICCV},
  year={2021}
}
Owner
Layer6 Labs
Research repositories from Layer 6 AI.
Layer6 Labs
Disagreement-Regularized Imitation Learning

Due to a normalization bug the expert trajectories have lower performance than the rl_baseline_zoo reported experts. Please see the following link in

Kianté Brantley 25 Apr 28, 2022
A naive ROS interface for visualDet3D.

YOLO3D ROS Node This repo contains a Monocular 3D detection Ros node. Base on https://github.com/Owen-Liuyuxuan/visualDet3D All parameters are exposed

Yuxuan Liu 19 Oct 08, 2022
Unet network with mean teacher for altrasound image segmentation

Unet network with mean teacher for altrasound image segmentation

5 Nov 21, 2022
Create Own QR code with Python

Create-Own-QR-code Create Own QR code with Python SO guys in here, you have to install pyqrcode 2. open CMD and type python -m pip install pyqrcode

JehanKandy 10 Jul 13, 2022
Generating Digital Painting Lighting Effects via RGB-space Geometry (SIGGRAPH2020/TOG2020)

Project PaintingLight PaintingLight is a project conducted by the Style2Paints team, aimed at finding a method to manipulate the illumination in digit

651 Dec 29, 2022
Automatic deep learning for image classification.

AutoDL AutoDL automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few line

wenqi 2 Oct 12, 2022
converts nominal survey data into a numerical value based on a dictionary lookup.

SWAP RATE Converts nominal survey data into a numerical values based on a dictionary lookup. It allows the user to switch nominal scale data from text

Jake Rhodes 1 Jan 18, 2022
Qlib is an AI-oriented quantitative investment platform

Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment.

Microsoft 10.1k Dec 30, 2022
Exe-to-xlsm - Simple script to create VBscript of exe and inject to xlsm

🎁 Exe To Office Executable file injection to Office documents: .xlsm, .docm, .p

3 Jan 25, 2022
Using deep actor-critic model to learn best strategies in pair trading

Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov

281 Dec 09, 2022
Kaggleship: Kaggle Notebooks

Kaggleship: Kaggle Notebooks This repository contains my Kaggle notebooks. They are generally about data science, machine learning, and deep learning.

Erfan Sobhaei 1 Jan 25, 2022
Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch.

SE3 Transformer - Pytorch Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch. May be needed for replicating Alphafold2 resu

Phil Wang 207 Dec 23, 2022
People log into different sites every day to get information and browse through these sites one by one

HyperLink People log into different sites every day to get information and browse through these sites one by one. And they are exposed to advertisemen

0 Feb 17, 2022
Official code of Team Yao at Multi-Modal-Fact-Verification-2022

Official code of Team Yao at Multi-Modal-Fact-Verification-2022 A Multi-Modal Fact Verification dataset released as part of the De-Factify workshop in

Wei-Yao Wang 11 Nov 15, 2022
TransVTSpotter: End-to-end Video Text Spotter with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 66 Dec 26, 2022
This project implements "virtual speed" from heart rate monito

ANT+ Virtual Stride Based Speed and Distance Monitor Overview This project imple

2 May 20, 2022
Dual Attention Network for Scene Segmentation (CVPR2019)

Dual Attention Network for Scene Segmentation(CVPR2019) Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang,and Hanqing Lu Introduction W

Jun Fu 2.2k Dec 28, 2022
Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Graph-to-3D This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arx

Helisa Dhamo 33 Jan 06, 2023
Code for paper: Towards Tokenized Human Dynamics Representation

Video Tokneization Codebase for video tokenization, based on our paper Towards Tokenized Human Dynamics Representation. Prerequisites (tested under Py

Kenneth Li 20 May 31, 2022
MARE - Multi-Attribute Relation Extraction

MARE - Multi-Attribute Relation Extraction Repository for the paper submission: #TODO: insert link, when available Environment Tested with Ubuntu 18.0

0 May 11, 2021