The implementation code for "DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction"

Overview

DAGAN

This is the official implementation code for DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction published in IEEE Transactions on Medical Imaging (2018).
Guang Yang*, Simiao Yu*, et al.
(* equal contributions)

If you use this code for your research, please cite our paper.

@article{yang2018_dagan,
	author = {Yang, Guang and Yu, Simiao and Dong, Hao and Slabaugh, Gregory G. and Dragotti, Pier Luigi and Ye, Xujiong and Liu, Fangde and Arridge, Simon R. and Keegan, Jennifer and Guo, Yike and Firmin, David N.},
	journal = {IEEE Trans. Med. Imaging},
	number = 6,
	pages = {1310--1321},
	title = {{DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction}},
	volume = 37,
	year = 2018
}

If you have any questions about this code, please feel free to contact Simiao Yu ([email protected]).

Prerequisites

The original code is in python 3.5 under the following dependencies:

  1. tensorflow (v1.1.0)
  2. tensorlayer (v1.7.2)
  3. easydict (v1.6)
  4. nibabel (v2.1.0)
  5. scikit-image (v0.12.3)

Code tested in Ubuntu 16.04 with Nvidia GPU + CUDA CuDNN (whose version is compatible to tensorflow v1.1.0).

How to use

  1. Prepare data

    1. Data used in this work are publicly available from the MICCAI 2013 grand challenge (link). We refer users to register with the grand challenge organisers to be able to download the data.
    2. Download training and test data respectively into data/MICCAI13_SegChallenge/Training_100 and data/MICCAI13_SegChallenge/Testing_100 (We randomly included 100 T1-weighted MRI datasets for training and 50 datasets for testing)
    3. run 'python data_loader.py'
    4. after running the code, training/validation/testing data should be saved to 'data/MICCAI13_SegChallenge/' in pickle format.
  2. Download pretrained VGG16 model

    1. Download 'vgg16_weights.npz' from this link
    2. Save 'vgg16_weights.npz' into 'trained_model/VGG16'
  3. Train model

    1. run 'CUDA_VISIBLE_DEVICES=0 python train.py --model MODEL --mask MASK --maskperc MASKPERC' where you should specify MODEL, MASK, MASKPERC respectively:
    • MODEL: choose from 'unet' or 'unet_refine'
    • MASK: choose from 'gaussian1d', 'gaussian2d', 'poisson2d'
    • MASKPERC: choose from '10', '20', '30', '40', '50' (percentage of mask)
  4. Test trained model

    1. run 'CUDA_VISIBLE_DEVICES=0 python test.py --model MODEL --mask MASK --maskperc MASKPERC' where you should specify MODEL, MASK, MASKPERC respectively (as above).

Results

Please refer to the paper for the detailed results.

Owner
TensorLayer Community
A neutral open community to promote AI technology.
TensorLayer Community
Reinforcement Learning via Supervised Learning

Reinforcement Learning via Supervised Learning Installation Run pip install -e . in an environment with Python = 3.7.0, 3.9. The code depends on MuJ

Scott Emmons 49 Nov 28, 2022
Data & Code for ACCENTOR Adding Chit-Chat to Enhance Task-Oriented Dialogues

ACCENTOR: Adding Chit-Chat to Enhance Task-Oriented Dialogues Overview ACCENTOR consists of the human-annotated chit-chat additions to the 23.8K dialo

Facebook Research 69 Dec 29, 2022
YOLOX + ROS(1, 2) object detection package

YOLOX + ROS(1, 2) object detection package

Ar-Ray 158 Dec 21, 2022
Unofficial implementation of One-Shot Free-View Neural Talking Head Synthesis

face-vid2vid Usage Dataset Preparation cd datasets wget https://yt-dl.org/downloads/latest/youtube-dl -O youtube-dl chmod a+rx youtube-dl python load_

worstcoder 68 Dec 30, 2022
ICON: Implicit Clothed humans Obtained from Normals (CVPR 2022)

ICON: Implicit Clothed humans Obtained from Normals Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black CVPR 2022 News 🚩 [2022/04/26] H

Yuliang Xiu 1.1k Jan 04, 2023
Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Yaoming Cai 5 Jul 18, 2022
Pytorch implementation for Patient Knowledge Distillation for BERT Model Compression

Patient Knowledge Distillation for BERT Model Compression Knowledge distillation for BERT model Installation Run command below to install the environm

Siqi 180 Dec 19, 2022
Matplotlib Image labeller for classifying images

mpl-image-labeller Use Matplotlib to label images for classification. Works anywhere Matplotlib does - from the notebook to a standalone gui! For more

Ian Hunt-Isaak 5 Sep 24, 2022
RTSeg: Real-time Semantic Segmentation Comparative Study

Real-time Semantic Segmentation Comparative Study The repository contains the official TensorFlow code used in our papers: RTSEG: REAL-TIME SEMANTIC S

Mennatullah Siam 592 Nov 18, 2022
The official implementation of the research paper "DAG Amendment for Inverse Control of Parametric Shapes"

DAG Amendment for Inverse Control of Parametric Shapes This repository is the official Blender implementation of the paper "DAG Amendment for Inverse

Elie Michel 157 Dec 26, 2022
DA2Lite is an automated model compression toolkit for PyTorch.

DA2Lite (Deep Architecture to Lite) is a toolkit to compress and accelerate deep network models. ⭐ Star us on GitHub — it helps!! Frameworks & Librari

Sinhan Kang 7 Mar 22, 2022
Pywonderland - A tour in the wonderland of math with python.

A Tour in the Wonderland of Math with Python A collection of python scripts for drawing beautiful figures and animating interesting algorithms in math

Zhao Liang 4.1k Jan 03, 2023
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

Holy Wu 35 Jan 01, 2023
Lightweight, Python library for fast and reproducible experimentation :microscope:

Steppy What is Steppy? Steppy is a lightweight, open-source, Python 3 library for fast and reproducible experimentation. Steppy lets data scientist fo

minerva.ml 134 Jul 10, 2022
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance [Video Demo] [Paper] Installation Requirements Python 3.6 PyTorch 1.1.0 Pleas

Jiachen Xu 19 Oct 28, 2022
Joint parameterization and fitting of stroke clusters

StrokeStrip: Joint Parameterization and Fitting of Stroke Clusters Dave Pagurek van Mossel1, Chenxi Liu1, Nicholas Vining1,2, Mikhail Bessmeltsev3, Al

Dave Pagurek 44 Dec 01, 2022
ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

Katherine Crowson 53 Dec 29, 2022
PaRT: Parallel Learning for Robust and Transparent AI

PaRT: Parallel Learning for Robust and Transparent AI This repository contains the code for PaRT, an algorithm for training a base network on multiple

Mahsa 0 May 02, 2022
A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks)

A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks) This repository contains a PyTorch implementation for the paper: Deep Pyra

Greg Dongyoon Han 262 Jan 03, 2023
Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Moustafa Meshry 16 Oct 05, 2022