Official repository accompanying a CVPR 2022 paper EMOCA: Emotion Driven Monocular Face Capture And Animation. EMOCA takes a single image of a face as input and produces a 3D reconstruction. EMOCA sets the new standard on reconstructing highly emotional images in-the-wild

Overview

EMOCA: Emotion Driven Monocular Face Capture and Animation

Radek Daněček · Michael J. Black · Timo Bolkart

CVPR 2022

This repository is the official implementation of the CVPR 2022 paper EMOCA: Emotion-Driven Monocular Face Capture and Animation.

Top row: input images. Middle row: coarse shape reconstruction. Bottom row: reconstruction with detailed displacements.


PyTorch Lightning Project Page Youtube Video Paper PDF

EMOCA takes a single in-the-wild image as input and reconstructs a 3D face with sufficient facial expression detail to convey the emotional state of the input image. EMOCA advances the state-of-the-art monocular face reconstruction in-the-wild, putting emphasis on accurate capture of emotional content. The official project page is here.

EMOCA project

The training and testing script for EMOCA can be found in this subfolder:

EMOCA

Installation

Dependencies

  1. Install conda

  2. Install mamba

  1. Clone this repo

Short version

  1. Run the installation script:
bash install.sh

If this ran without any errors, you now have a functioning conda environment with all the necessary packages to run the demos. If you had issues with the installation script, go through the long version of the installation and see what went wrong. Certain packages (especially for CUDA, PyTorch and PyTorch3D) may cause issues for some users.

Long version

  1. Pull the relevant submodules using:
bash pull_submodules.sh
  1. Set up a conda environment with one of the provided conda files. I recommend using conda-environment_py36_cu11_ubuntu.yml.

You can use mamba to create a conda environment (strongly recommended):

mamba env create python=3.6 --file conda-environment_py36_cu11_ubuntu.yml

but you can also use plain conda if you want (but it will be slower):

conda env create python=3.6 --file conda-environment_py36_cu11_ubuntu.yml

Note: the environment might contain some packages. If you find an environment is missing then just conda/mamba- or pip- install it and please notify me.

  1. Activate the environment:
conda activate work36_cu11
  1. For some reason cython is glitching in the requirements file so install it separately:
pip install Cython==0.29.14
  1. Install gdl using pip install. I recommend using the -e option and I have not tested otherwise.
pip install -e .
  1. Verify that previous step correctly installed Pytorch3D

For some people the compilation fails during requirements install and works after. Try running the following separately:

pip install git+https://github.com/facebookresearch/[email protected]

Pytorch3D installation (which is part of the requirements file) can unfortunately be tricky and machine specific. EMOCA was developed with is Pytorch3D 0.6.0 and the previous command includes its installation from source (to ensure its compatibility with pytorch and CUDA). If it fails to compile, you can try to find another way to install Pytorch3D.

Note: EMOCA was developed with Pytorch 1.9.1 and Pytorch3d 0.6.0 running on CUDA toolkit 11.1.1 with cuDNN 8.0.5. If for some reason installation of these failed on your machine (which can happen), feel free to install these dependencies another way. The most important thing is that version of Pytorch and Pytorch3D match. The version of CUDA is probably less important.

Usage

  1. Activate the environment:
conda activate work36_cu11
  1. For running EMOCA examples, go to EMOCA

  2. For running examples of Emotion Recognition, go to EmotionRecognition

Structure

This repo has two subpackages. gdl and gdl_apps

GDL

gdl is a library full of research code. Some things are OK organized, some things are badly organized. It includes but is not limited to the following:

  • models is a module with (larger) deep learning modules (pytorch based)
  • layers contains individual deep learning layers
  • datasets contains base classes and their implementations for various datasets I had to use at some points. It's mostly image-based datasets with various forms of GT if any
  • utils - various tools

The repo is heavily based on PyTorch and Pytorch Lightning.

GDL_APPS

gdl_apps contains prototypes that use the GDL library. These can include scripts on how to train, evaluate, test and analyze models from gdl and/or data for various tasks.

Look for individual READMEs in each sub-projects.

Current projects:

Citation

If you use this work in your publication, please cite the following publications:

@inproceedings{EMOCA:CVPR:2022,
  title = {{EMOCA}: {E}motion Driven Monocular Face Capture and Animation},
  author = {Danecek, Radek and Black, Michael J. and Bolkart, Timo},
  booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
  pages = {},
  year = {2022}
}

As EMOCA builds on top of DECA and uses parts of DECA as fixed part of the model, please further cite:

@article{DECA:Siggraph2021,
  title={Learning an Animatable Detailed {3D} Face Model from In-The-Wild Images},
  author={Feng, Yao and Feng, Haiwen and Black, Michael J. and Bolkart, Timo},
  journal = {ACM Transactions on Graphics (ToG), Proc. SIGGRAPH},
  volume = {40}, 
  number = {8}, 
  year = {2021}, 
  url = {https://doi.org/10.1145/3450626.3459936} 
}

License

This code and model are available for non-commercial scientific research purposes as defined in the LICENSE file. By downloading and using the code and model you agree to the terms of this license.

Acknowledgements

There are many people who deserve to get credited. These include but are not limited to: Yao Feng and Haiwen Feng and their original implementation of DECA. Antoine Toisoul and colleagues for EmoNet.

Building a real-time environment using webcam frame division in OpenCV and classify cropped images using a fine-tuned vision transformers on hybryd datasets samples for facial emotion recognition.

Visual Transformer for Facial Emotion Recognition (FER) This project has the aim to build an efficient Visual Transformer for the Facial Emotion Recog

Mario Sessa 8 Dec 12, 2022
The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022.

Generative Modeling with Optimal Transport Maps The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal

Litu Rout 30 Dec 22, 2022
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2020 Links Doc

Sebastian Raschka 4.2k Jan 02, 2023
Welcome to The Eigensolver Quantum School, a quantum computing crash course designed by students for students.

TEQS Welcome to The Eigensolver Quantum School, a crash course designed by students for students. The aim of this program is to take someone who has n

The Eigensolvers 53 May 18, 2022
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

Facebook Research 171 Nov 23, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
The code repository for "PyCIL: A Python Toolbox for Class-Incremental Learning" in PyTorch.

PyCIL: A Python Toolbox for Class-Incremental Learning Introduction • Methods Reproduced • Reproduced Results • How To Use • License • Acknowledgement

Fu-Yun Wang 258 Dec 31, 2022
Official code of paper "PGT: A Progressive Method for Training Models on Long Videos" on CVPR2021

PGT Code for paper PGT: A Progressive Method for Training Models on Long Videos. Install Run pip install -r requirements.txt. Run python setup.py buil

Bo Pang 27 Mar 30, 2022
Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper

TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I

Phil Wang 146 Dec 06, 2022
TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels.

AutoDSP TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels. About Adaptive filtering algorithms are commonplace in sign

Jonah Casebeer 48 Sep 19, 2022
Official PyTorch implementation of the paper: DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample

DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample (ICCV 2021 Oral) Project | Paper Official PyTorch implementation of the pape

Eliahu Horwitz 393 Dec 22, 2022
Animatable Neural Radiance Fields for Modeling Dynamic Human Bodies

To make the comparison with Animatable NeRF easier on the Human3.6M dataset, we save the quantitative results at here, which also contains the results of other methods, including Neural Body, D-NeRF,

ZJU3DV 359 Jan 08, 2023
Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"

DMT: Dynamic Mutual Training for Semi-Supervised Learning This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Superv

Zhengyang Feng 120 Dec 30, 2022
PyTorch implementation of the Quasi-Recurrent Neural Network - up to 16 times faster than NVIDIA's cuDNN LSTM

Quasi-Recurrent Neural Network (QRNN) for PyTorch Updated to support multi-GPU environments via DataParallel - see the the multigpu_dataparallel.py ex

Salesforce 1.3k Dec 28, 2022
Resources for the Ki testnet challenge

Ki Testnet Challenge This repository hosts ki-testnet-challenge. A set of scripts and resources to be used for the Ki Testnet Challenge What is the te

Ki Foundation 23 Aug 08, 2022
Deep Learning GPU Training System

DIGITS DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models. The currently supported frameworks are: Caffe, To

NVIDIA Corporation 4.1k Jan 03, 2023
Metrics to evaluate quality and efficacy of synthetic datasets.

An Open Source Project from the Data to AI Lab, at MIT Metrics for Synthetic Data Generation Projects Website: https://sdv.dev Documentation: https://

The Synthetic Data Vault Project 129 Jan 03, 2023
Code to train models from "Paraphrastic Representations at Scale".

Paraphrastic Representations at Scale Code to train models from "Paraphrastic Representations at Scale". The code is written in Python 3.7 and require

John Wieting 71 Dec 19, 2022
Active learning for Mask R-CNN in Detectron2

MaskAL - Active learning for Mask R-CNN in Detectron2 Summary MaskAL is an active learning framework that automatically selects the most-informative i

49 Dec 20, 2022
Hooks for VCOCO

Verbs in COCO (V-COCO) Dataset This repository hosts the Verbs in COCO (V-COCO) dataset and associated code to evaluate models for the Visual Semantic

Saurabh Gupta 131 Nov 24, 2022