Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper

Overview

TransGanFormer (wip)

Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. It will also contain a bunch of tricks I have picked up building transformers and GANs for the last year or so, including efficient linear attention and pixel level attention.

Install

$ pip install transganformer

Usage

$ transganformer --data ./path/to/data

Citations

@misc{jiang2021transgan,
    title   = {TransGAN: Two Transformers Can Make One Strong GAN}, 
    author  = {Yifan Jiang and Shiyu Chang and Zhangyang Wang},
    year    = {2021},
    eprint  = {2102.07074},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
@misc{hudson2021generative,
    title   = {Generative Adversarial Transformers}, 
    author  = {Drew A. Hudson and C. Lawrence Zitnick},
    year    = {2021},
    eprint  = {2103.01209},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
You might also like...
Finding all things on-prem Microsoft for password spraying and enumeration.
Finding all things on-prem Microsoft for password spraying and enumeration.

msprobe About Installing Usage Examples Coming Soon Acknowledgements About Finding all things on-prem Microsoft for password spraying and enumeration.

Implementation of the šŸ˜‡ Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones
Implementation of the šŸ˜‡ Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones

HaloNet - Pytorch Implementation of the Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones. This re

Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"

Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(

Implementation of Deformable Attention in Pytorch from the paper
Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"

Deformable Attention Implementation of Deformable Attention from this paper in Pytorch, which appears to be an improvement to what was proposed in DET

A curated (most recent) list of resources for Learning with Noisy Labels

A curated (most recent) list of resources for Learning with Noisy Labels

The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"

TimeSformer This is an official pytorch implementation of Is Space-Time Attention All You Need for Video Understanding?. In this repository, we provid

Unofficial PyTorch implementation of Fastformer based on paper
Unofficial PyTorch implementation of Fastformer based on paper "Fastformer: Additive Attention Can Be All You Need"."

Fastformer-PyTorch Unofficial PyTorch implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Usage : import t

Unofficial Tensorflow-Keras implementation of Fastformer based on paper [Fastformer: Additive Attention Can Be All You Need](https://arxiv.org/abs/2108.09084).
Unofficial Tensorflow-Keras implementation of Fastformer based on paper [Fastformer: Additive Attention Can Be All You Need](https://arxiv.org/abs/2108.09084).

Fastformer-Keras Unofficial Tensorflow-Keras implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Tensorflo

Comments
  • kmeans_iters in attention

    kmeans_iters in attention

    Hello first at all thank you for taking the time and port all of theses models to pytorch, you are really helping out people like me who have tensorflow as a second language :D

    in line 689 of https://github.com/dorarad/gansformer/blob/main/training/network.py there is a loop over kmeans-iter in the transformerlayer, but i can t find this loop in your implementation of Attention, is it implicitly implemented with these einops - i am sadly not fluent with einops or tensorflow :/

    regards martin

    opened by martinpflaum 0
  • dual_contrast_loss argument - error while training

    dual_contrast_loss argument - error while training

    When trying to train a model, the dual_contrast_loss argument spits up an error on lightweight-gan.py. My guess is that it's not implemented yet.

    At first I thought it was a mismatch (should it be dual_contrastive_loss btw like in lightweight-gan?) but apparently needed to be commented out for training to start successfully.

    Very exciting by the way! Training seems to be super fast, about 28h for 150,000 iterations for a 256p model on my 2080 (although it's a very small dataset). I'll share some closer-to-final results once I have them.

    Best, Theodore.

    opened by TheodoreGalanos 2
Owner
Phil Wang
Working with Attention. It's all we need.
Phil Wang
A smart Chat bot that can help to know about corona virus and Make prediction of corona using X-ray.

TRINIT_Hum_kuchh_nahi_karenge_ML01 Document Link https://github.com/Jatin-Goyal-552/TRINIT_Hum_kuchh_nahi_karenge_ML01/blob/main/hum_kuchh_nahi_kareng

JatinGoyal 1 Feb 03, 2022
Saeed Lotfi 28 Dec 12, 2022
Learning Versatile Neural Architectures by Propagating Network Codes

Learning Versatile Neural Architectures by Propagating Network Codes Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang,

Mingyu Ding 36 Dec 06, 2022
[ACMMM 2021, Oral] Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception"

EIP: Elastic Interaction of Particles Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception", in ACMMM (Oral) 2021. By Yikai

Yikai Wang 37 Dec 20, 2022
Corgis are the cutest creatures; have 30K of them!

corgi-net This is a dataset of corgi images scraped from the corgi subreddit. After filtering using an ImageNet classifier, the training set consists

Alex Nichol 6 Dec 24, 2022
Code for Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks

Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks Under construction. Description Code for Phase diagram of S

Rodrigo Veiga 3 Nov 24, 2022
Some experiments with tennis player aging curves using Hilbert space GPs in PyMC. Only experimental for now.

NOTE: This is still being developed! Setup notes This document uses Jeff Sackmann's tennis data. You can obtain it as follows: git clone https://githu

Martin Ingram 1 Jan 20, 2022
(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework

(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework Background: Outlier detection (OD) is a key data mining task for identify

Yue Zhao 127 Jan 05, 2023
Using a Seq2Seq RNN architecture via TensorFlow to predict future Bitcoin prices

Recurrent Bitcoin Network A Data Science Thesis Project About This repository contains the source code for implementing Bitcoin price prediciton using

Frizu 6 Sep 08, 2022
RoboDesk A Multi-Task Reinforcement Learning Benchmark

RoboDesk A Multi-Task Reinforcement Learning Benchmark If you find this open source release useful, please reference in your paper: @misc{kannan2021ro

Google Research 66 Oct 07, 2022
Train a deep learning net with OpenStreetMap features and satellite imagery.

DeepOSM Classify roads and features in satellite imagery, by training neural networks with OpenStreetMap (OSM) data. DeepOSM can: Download a chunk of

TrailBehind, Inc. 1.3k Nov 24, 2022
Deep-Learning-Book-Chapter-Summaries - Attempting to make the Deep Learning Book easier to understand.

Deep-Learning-Book-Chapter-Summaries This repository provides a summary for each chapter of the Deep Learning book by Ian Goodfellow, Yoshua Bengio an

Aman Dalmia 1k Dec 27, 2022
Code for Learning to Segment The Tail (LST)

Learning to Segment the Tail [arXiv] In this repository, we release code for Learning to Segment The Tail (LST). The code is directly modified from th

47 Nov 07, 2022
DIRL: Domain-Invariant Representation Learning

DIRL: Domain-Invariant Representation Learning Domain-Invariant Representation Learning (DIRL) is a novel algorithm that semantically aligns both the

Ajay Tanwani 30 Nov 07, 2022
Probabilistic Gradient Boosting Machines

PGBM Probabilistic Gradient Boosting Machines (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Air

Olivier Sprangers 112 Dec 28, 2022
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models This repo contains code for DDPM training. Based on Denoising Diffusion Probabilistic Models, Improved Denois

Alexander Markov 7 Dec 15, 2022
Addition of pseudotorsion caclulation eta, theta, eta', and theta' to barnaba package

Addition to Original Barnaba Code: This is modified version of Barnaba package to calculate RNA pseudotorsion angles eta, theta, eta', and theta'. Ple

Mandar Kulkarni 1 Jan 11, 2022
PyTorch implementations of the paper: "Learning Independent Instance Maps for Crowd Localization"

IIM - Crowd Localization This repo is the official implementation of paper: Learning Independent Instance Maps for Crowd Localization. The code is dev

tao han 91 Nov 10, 2022
Real time sign language recognition

The proposed work aims at converting american sign language gestures into English that can be understood by everyone in real time.

Mohit Kaushik 6 Jun 13, 2022