Re-implement CycleGAN in Tensorlayer

Overview

CycleGAN_Tensorlayer

Re-implement CycleGAN in TensorLayer

  • Original CycleGAN
  • Improved CycleGAN with resize-convolution

Prerequisites:

  • TensorLayer
  • TensorFlow
  • Python

Run:

CUDA_VISIBLE_DEVICES=0 python main.py 

(if datasets are collected by yourself, you can use dataset_clean.py or dataset_crop.py to pre-process images)

Theory:

The generator process:

Image text

The discriminator process:

Image text

Result Improvement

  • Data augmentation
  • Resize convolution[4]
  • Instance normalization[5]

data augmentation:

Image text

Instance normalization(comparision by original paper https://arxiv.org/abs/1607.08022):

Image text

Resize convolution (Remove Checkerboard Artifacts):

Image text

Image text

Final Results:

Image text

Image text

Reference:

Comments
  • Difference from original code

    Difference from original code

    HI very nice implemented cyclegan I have a few questions...

    1. What does "Resize Convolution" mean?
    2. I wonder what is different from the original code of the author.
    opened by taki0112 7
  • Color inversion, black image and nan in loss after ~20 epochs

    Color inversion, black image and nan in loss after ~20 epochs

    I've tried to train the model on original summer2winter_yosemite dataset. After ~20 epochs all sample images turned completely black, and all all loss parameters turned to nan. However, the model continued to run for 30 more epochs regularly saving checkpoints until I stopped it.

    I've also used another, my own dataset, and it ran correctly for 70 epochs at least, unfortunately the only result I had was color inversion of images. Any advice on changing training parameters (I used default)?

    opened by victor-felicitas 0
  • How to change test output size?

    How to change test output size?

    Hi! It is a great implementation of Cyclegan, providing excellent results on Hiptensorflow and ROCm. However, I could not use it to generate test images of different from 256x256 sizes. How can I change that?

    For now, I have trained the model on 256x256 images and try to test it on bigger ones. I tried adding two more flags to main.py: flags.DEFINE_integer("image_width", 420, "The size of image to use (will be center cropped) [256]") flags.DEFINE_integer("image_height", 420, "The size of image to use (will be center cropped) [256]")

    Which I use later in Test section: test_A = tf.placeholder(tf.float32, [FLAGS.batch_size, FLAGS.image_height, FLAGS.image_width, FLAGS.c_dim], name='test_x') test_B = tf.placeholder(tf.float32, [FLAGS.batch_size, FLAGS.image_height, FLAGS.image_width, FLAGS.c_dim], name='test_y')

    However, I always get error: Invalid argument: Conv2DSlowBackpropInput: Size of out_backprop doesn't match computed: actual = 105, computed = 64 Traceback (most recent call last): File "main.py", line 285, in tf.app.run() File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/platform/app.py", line 44, in run _sys.exit(main(_sys.argv[:1] + flags_passthrough)) File "main.py", line 281, in main test_cyclegan() File "main.py", line 262, in test_cyclegan fake_img = sess.run(net_g_logits, feed_dict={in_var: sample_image}) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 767, in run run_metadata_ptr) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 965, in _run feed_dict_string, options, run_metadata) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 1015, in _do_run target_list, options, run_metadata) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 1035, in _do_call raise type(e)(node_def, op, message) tensorflow.python.framework.errors_impl.InvalidArgumentError: Conv2DSlowBackpropInput: Size of out_backprop doesn't match computed: actual = 105, computed = 64 [[Node: gen_A2B/u64/conv2d_transpose = Conv2DBackpropInput[T=DT_FLOAT, data_format="NHWC", padding="SAME", strides=[1, 2, 2, 1], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/gpu:0"](gen_A2B/u64/conv2d_transpose/output_shape, gen_A2B/u64/W_deconv2d/read, gen_A2B/b_residual_add/8)]]

    Is there any way to choose output image size? Original Cyclegan has special option to choose it - how can i implement it? resize_or_crop = 'resize_and_crop', -- resizing/cropping strategy: resize_and_crop | crop | scale_width | scale_height

    Any help would be appreciated!

    opened by victor-felicitas 0
  • About the imagepool.

    About the imagepool.

    opened by Zardinality 0
  • Error in main.py?

    Error in main.py?

    Hi @zsdonghao @luoxier , Is there an error in your main.py: _, errGB2A = sess.run([g_b2a_optim, g_b2a_loss], feed_dict={real_A: batch_imgB, real_B: batch_imgB}) Does it should be: _, errGB2A = sess.run([g_b2a_optim, g_b2a_loss], feed_dict={real_A: batch_imgA, real_B: batch_imgB}) Could you please check it and let me know, thanks.

    opened by yongqiangzhang1 2
  • Where are datasets shown in readme?

    Where are datasets shown in readme?

    opened by Zardinality 7
Releases(0.1)
Residual Pathway Priors for Soft Equivariance Constraints

Residual Pathway Priors for Soft Equivariance Constraints This repo contains the implementation and the experiments for the paper Residual Pathway Pri

Marc Finzi 13 Oct 12, 2022
Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021)

Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021) Zeyu Wang, Sherry Qiu, Nicole Feng, Holly Rushmeier, Leonard McMill

Zach Zeyu Wang 23 Dec 09, 2022
End-To-End Memory Network using Tensorflow

MemN2N Implementation of End-To-End Memory Networks with sklearn-like interface using Tensorflow. Tasks are from the bAbl dataset. Get Started git clo

Dominique Luna 339 Oct 27, 2022
Facebook Research 605 Jan 02, 2023
Towards Multi-Camera 3D Human Pose Estimation in Wild Environment

PanopticStudio Toolbox This repository has a toolbox to download, process, and visualize the Panoptic Studio (Panoptic) data. Note: Sep-21-2020: Curre

335 Jan 09, 2023
Visualizer for neural network, deep learning, and machine learning models

Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX (.onnx, .pb, .pbtxt), Keras (.h5, .keras), Tens

Lutz Roeder 21k Jan 06, 2023
The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"

TimeSformer This is an official pytorch implementation of Is Space-Time Attention All You Need for Video Understanding?. In this repository, we provid

Facebook Research 1k Dec 31, 2022
CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on table detection and table structure recognition.

WTW-Dataset This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on ICCV 2021. Here, you can download the

109 Dec 29, 2022
Change Detection in SAR Images Based on Multiscale Capsule Network

SAR_CD_MS_CapsNet Code for the paper "Change Detection in SAR Images Based on Multiscale Capsule Network" , IEEE Geoscience and Remote Sensing Letters

Feng Gao 21 Nov 29, 2022
Human pose estimation from video plays a critical role in various applications such as quantifying physical exercises, sign language recognition, and full-body gesture control.

Pose Detection Project Description: Human pose estimation from video plays a critical role in various applications such as quantifying physical exerci

Hassan Shahzad 2 Jan 17, 2022
Code for BMVC2021 "MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation"

MOS-Multi-Task-Face-Detect Introduction This repo is the official implementation of "MOS: A Low Latency and Lightweight Framework for Face Detection,

104 Dec 08, 2022
Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation

Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation The code of: Cross-Image Region Mining with Region Proto

LiuWeide 16 Nov 26, 2022
Pytorch implementation of COIN, a framework for compression with implicit neural representations 🌸

COIN 🌟 This repo contains a Pytorch implementation of COIN: COmpression with Implicit Neural representations, including code to reproduce all experim

Emilien Dupont 104 Dec 14, 2022
A Deep Reinforcement Learning Framework for Stock Market Trading

DQN-Trading This is a framework based on deep reinforcement learning for stock market trading. This project is the implementation code for the two pap

61 Jan 01, 2023
Implementation of Convolutional LSTM in PyTorch.

ConvLSTM_pytorch This file contains the implementation of Convolutional LSTM in PyTorch made by me and DavideA. We started from this implementation an

Andrea Palazzi 1.3k Dec 29, 2022
TJU Deep Learning & Neural Network

Deep_Learning & Neural_Network_Lab 实验环境 Python 3.9 Anaconda3(官网下载或清华镜像都行) PyTorch 1.10.1(安装代码如下) conda install pytorch torchvision torchaudio cudatool

St3ve Lee 1 Jan 19, 2022
A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks

SVHNClassifier-PyTorch A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks If

Potter Hsu 182 Jan 03, 2023
Anti-UAV base on PaddleDetection

Paddle-Anti-UAV Anti-UAV base on PaddleDetection Background UAVs are very popular and we can see them in many public spaces, such as parks and playgro

Qingzhong Wang 2 Apr 20, 2022
clustimage is a python package for unsupervised clustering of images.

clustimage The aim of clustimage is to detect natural groups or clusters of images. Image recognition is a computer vision task for identifying and ve

Erdogan Taskesen 52 Jan 02, 2023