SGoLAM - Simultaneous Goal Localization and Mapping

Related tags

Deep LearningSGoLAM
Overview

SGoLAM - Simultaneous Goal Localization and Mapping

PyTorch implementation of the MultiON runner-up entry, SGoLAM: Simultaneous Goal Localization and Mapping [Talk Video]. Our method does not employ any training of neural networks, but shows competent performance in the MultiON benchmark. In fact, we outperform the winning entry by a large margin in terms of success rate.

alt text

We encourage future participants of the MultiON challenge to use our code as a starting point for implementing more sophisticated navigation agents. If you have any questions on running SGoLAM please leave an issue.

Notes on Installation

To run experiments locally/on a server, follow the 'bag of tricks' below:

  1. Please abide by the steps provided in the original MultiON repository. (Don't bother looking at other repositories!)
  2. Along the installation process, numerous dependency errors will occur. Don't look for other workarounds and just humbly install what is missing.
  3. For installing Pytorch and other CUDA dependencies, it seems like the following command works: conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch.
  4. By the way, habitat-lab installation is much easier than habitat-sim. You don't necessarily need to follow the instructions provided in the MultiON repository for habitat-lab. Just go directly to the habitat-lab repository and install habitat-lab. However, for habitat-sim, you must follow MultiON's directions; or a pile of bugs will occur.
  5. One python evaluate.py is run, a horrifying pile of dependency errors will occur. Now we will go over some of the prominent ones.
  6. To solve AttributeError: module 'attr' has no attribute 's', run pip uninstall attr and then run pip install attrs.
  7. To solve ModuleNotFoundError: No module named 'imageio', run pip install imageio-ffmpeg.
  8. To solve ImportError: ModuleNotFoundError: No module named 'magnum', run pip install build/deps/magnum-bindings/src/python.
  9. The last and most important 'trick' is to google errors. The Habitat team seems to be doing a great job answering GitHub issues. Probably someone has already ran into the error you are facing.
  10. If additional 'tricks' are found, feel free to share by appending to the list starting from here. `

Docker Sanity Check (Last Modified: 2021.03.26:20:11)

A number of commands to take for docker sanity check.

Login

First, login to the dockerhub repository. As our accounts don't support private repositories with multiple collaborators, we need to share a single ID. For the time being let's use my ID. Type the following command

docker login

Now one will be prompted a user ID and PW. Please type ID: esteshills PW: 82magnolia.

Pull Image

I have already built an image ready for preliminary submission. It can be easily pulled using the following command.

docker pull esteshills/multion_test:tagname

Run Evaluation

To make an evaluation for standard submission, run the following command. Make sure DATA_DIR and ORIG_DATA_DIR from scripts/test_docker.sh are modified before running.

cd scripts/
./test_docker.sh

Playing around with Docker Images

One may want to further examine the docker image. Run the following command.

cd scripts/
./test_docker_bash.sh

Again, make sure DATA_DIR and ORIG_DATA_DIR from scripts/test_docker.sh are modified before running. Note that the commands provided in the MultiON repository can be run inside the container. For example:

python habitat_baselines/run.py --exp-config habitat_baselines/config/multinav/ppo_multinav_no_map.yaml --agent-type no-map --run-type eval

In order to run other baselines, i) modify the checkpoint path in the .yaml file, ii) download the model checkpoint, iii) change the agent type.

Preventing Hassles with Docker (Last Modified: 2021.04.08:09:07)

Now we probably don't need to develop with docker. Just plug in your favorite agent following the instructions provided below.

Plug-and-Play New Agents

One can easily test new agents by providing the file name containing agent implementation. To implement a new agent, please refer to agents/example.py. To test a new agent and get evaluation results, run the following command (this is an example for the no_map baseline).

python evaluate.py --agent_module no_map_walker --exp_config habitat_baselines/config/multinav/ppo_multinav_no_map.yaml --checkpoint_path model_checkpoints/ckpt.0.pth --no_fill

In addition, one can change the number of episodes to be tested. However, this feature is only available in the annotated branch, as it requires a slight modification in the core habitat repository. Run the following command to change the number of episodes. While it will not produce any bugs in the main branch as well, the argument will have no effect.

python evaluate.py --agent_module no_map_walker --exp_config habitat_baselines/config/multinav/ppo_multinav_no_map.yaml --checkpoint_path model_checkpoints/ckpt.0.pth --no_fill --num_episodes 100

Plug-and-Play New Agents from Local Host

Running Agents

Suppose one has some implementations of navigation agents that are not yet pushed to agents/. These could be tested on-the-fly using a handy script provided in scripts. First, put all the agent implementations inside extern_agents/, similar to implementations in agents/. Then run the following command with the agent module you are trying to run, for example if the new agent module is located in extern_agents/new_agent.py, run

./scripts/test_docker_agent.sh new_agent

Make sure the agents are located in the extern_agents/ folder. This way, there is no need to directly hassle with docker; docker is merely used as a black box for running evaluations.

Now suppose one needs to debug the agent in the docker environment. This could be done by running the following script; it will open bash with extern_agents/ mounted.

./scripts/test_docker_agent_bash.sh

To run evaluations inside the docker container, run the following command with the agent module name (in this case new_agent) provided.

./scripts/extern_eval.sh new_agent

Playing Agent Episodes with Video

Agent trajectories per episode can be visualized with the scripts in scripts/. Again, put all the agent implementations inside extern_agents/. Then run the following command with the agent module you are trying to run, for example if the new agent module is located in extern_agents/new_agent.py, run

./scripts/test_docker_agent_video.sh new_agent 

Make sure the mount paths are set correctly inside ./scripts/test_docker_agent_video.sh.

To run evaluations inside the docker container, run the following command with the agent module name (in this case new_agent) and video save directory (in this case ./test_dir) provided.

./scripts/extern_eval_video.sh new_agent ./test_dir

Caveats

The original implementations assume two GPUs to be given. Therefore bugs may occur if only a single GPU is present. In this case do not run the docker scripts directly, as it will return errors. Instead, connect to a docker container with bash and first modify the baseline .yaml configuration so that it only uses a single GPU. Then, run the *_eval*.sh scripts. I am planning on remedying this issue with a similar plug-and-play fashion, but for the time being, stick to this procedure.

The 2nd place solution of 2021 google landmark retrieval on kaggle.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

229 Dec 13, 2022
Gesture Volume Control Using OpenCV and MediaPipe

This Project Uses OpenCV and MediaPipe Hand solutions to identify hands and Change system volume by taking thumb and index finger positions

Pratham Bhatnagar 6 Sep 12, 2022
Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN)

Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN) This code implements the skeleton-based action segmentation MS-GCN model from Autom

Benjamin Filtjens 8 Nov 29, 2022
Framework web SnakeServer.

SnakeServer - Framework Web 🐍 Documentação oficial do framework SnakeServer. Conteúdo Sobre Como contribuir Enviar relatórios de segurança Pull reque

Jaedson Silva 0 Jul 21, 2022
Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation"

1 Introduction Official code for article "Expression is enough: Improving traffic signal control with advanced traffic state representation". The code s

Liang Zhang 10 Dec 10, 2022
Keras code and weights files for popular deep learning models.

Trained image classification models for Keras THIS REPOSITORY IS DEPRECATED. USE THE MODULE keras.applications INSTEAD. Pull requests will not be revi

François Chollet 7.2k Dec 29, 2022
Iris prediction model is used to classify iris species created julia's DecisionTree, DataFrames, JLD2, PlotlyJS and Statistics packages.

Iris Species Predictor Iris prediction is used to classify iris species using their sepal length, sepal width, petal length and petal width created us

Siva Prakash 2 Jan 06, 2022
PoseCamera is python based SDK for human pose estimation through RGB webcam.

PoseCamera PoseCamera is python based SDK for human pose estimation through RGB webcam. Install install posecamera package through pip pip install pos

WonderTree 7 Jul 20, 2021
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
Lab course materials for IEMBA 8/9 course "Coding and Artificial Intelligence"

IEMBA 8/9 - Coding and Artificial Intelligence Dear IEMBA 8/9 students, welcome to our IEMBA 8/9 elective course Coding and Artificial Intelligence, t

Artificial Intelligence & Machine Learning (AI:ML Lab) @ HSG 1 Jan 11, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Vide

Jonas Wu 232 Dec 29, 2022
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents".

Introduction This code is the implementation of the paper "Coherence-Based Distributed Document Representation Learning for Scientific Documents". If

tsc 0 Jan 11, 2022
Tensorflow implementation of DeepLabv2

TF-deeplab This is a Tensorflow implementation of DeepLab, compatible with Tensorflow 1.2.1. Currently it supports both training and testing the ResNe

Chenxi Liu 21 Sep 27, 2022
LightNet++: Boosted Light-weighted Networks for Real-time Semantic Segmentation

LightNet++ !!!New Repo.!!! ⇒ EfficientNet.PyTorch: Concise, Modular, Human-friendly PyTorch implementation of EfficientNet with Pre-trained Weights !!

linksense 237 Jan 05, 2023
EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos.

EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos. In this project, we provide the basic code for fitt

ZJU3DV 2.2k Jan 05, 2023
Read and write layered TIFF ImageSourceData and ImageResources tags

Read and write layered TIFF ImageSourceData and ImageResources tags Psdtags is a Python library to read and write the Adobe Photoshop(r) specific Imag

Christoph Gohlke 4 Feb 05, 2022
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Demetri Pananos 9 Oct 04, 2022
Pun Detection and Location

Pun Detection and Location “The Boating Store Had Its Best Sail Ever”: Pronunciation-attentive Contextualized Pun Recognition Yichao Zhou, Jyun-yu Jia

lawson 3 May 13, 2022