IDRLnet, a Python toolbox for modeling and solving problems through Physics-Informed Neural Network (PINN) systematically.

Overview

IDRLnet

License Python Documentation Status PyPI version DockerHub CodeFactor

IDRLnet is a machine learning library on top of PyTorch. Use IDRLnet if you need a machine learning library that solves both forward and inverse differential equations via physics-informed neural networks (PINN). IDRLnet is a flexible framework inspired by Nvidia Simnet.

Docs

Installation

Choose one of the following installation methods.

PyPI

Simple installation from PyPI.

pip install -U idrlnet

Note: To avoid version conflicts, please use some tools to create a virtual environment first.

Docker

Pull latest docker image from Dockerhub.

docker pull idrl/idrlnet:latest
docker run -it idrl/idrlnet:latest bash

Note: Available tags can be found in Dockerhub.

Anaconda

conda create -n idrlnet_dev python=3.8 -y
conda activate idrlnet_dev
pip install idrlnet

From Source

git clone https://github.com/idrl-lab/idrlnet
cd idrlnet
pip install -e .

Features

IDRLnet supports

  • complex domain geometries without mesh generation. Provided geometries include interval, triangle, rectangle, polygon, circle, sphere... Other geometries can be constructed using three boolean operations: union, difference, and intersection;

  • sampling in the interior of the defined geometry or on the boundary with given conditions.

  • enables the user code to be structured. Data sources, operations, constraints are all represented by Node. The graph will be automatically constructed via label symbols of each node. Getting rid of the explicit construction via explicit expressions, users model problems more naturally.

  • solving variational minimization problem;

  • solving integral differential equation;

  • adaptive resampling;

  • recover unknown parameters of PDEs from noisy measurement data.

It is also easy to customize IDRLnet to meet new demands.

Contributing to IDRLnet

First off, thanks for taking the time to contribute!

  • Reporting bugs. To report a bug, simply open an issue in the GitHub "Issues" section.

  • Suggesting enhancements. To submit an enhancement suggestion for IDRLnet, including completely new features and minor improvements to existing functionality, let us know by opening an issue.

  • Pull requests. If you made improvements to IDRLnet, fixed a bug, or had a new example, feel free to send us a pull-request.

  • Asking questions. To get help on how to use IDRLnet or its functionalities, you can as well open an issue.

  • Answering questions. If you know the answer to any question in the "Issues", you are welcomed to answer.

The Team

IDRLnet was originally developed by IDRL lab.

Citation

Feel free to cite this library.

@article{peng2021idrlnet,
      title={IDRLnet: A Physics-Informed Neural Network Library}, 
      author={Wei Peng and Jun Zhang and Weien Zhou and Xiaoyu Zhao and Wen Yao and Xiaoqian Chen},
      year={2021},
      eprint={2107.04320},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
You might also like...
Some code of the implements of Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network

3D-GMPDCNN Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network PyTorch implementation of "Geological Modeling Usin

Official code for Score-Based Generative Modeling through Stochastic Differential Equations
Official code for Score-Based Generative Modeling through Stochastic Differential Equations

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains the official implementation for the paper Score-Based Gen

PyTorch implementation for Score-Based Generative Modeling through Stochastic Differential Equations (ICLR 2021, Oral)
PyTorch implementation for Score-Based Generative Modeling through Stochastic Differential Equations (ICLR 2021, Oral)

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains a PyTorch implementation for the paper Score-Based Genera

Code repo for
Code repo for "RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network" (Machine Learning and the Physical Sciences workshop in NeurIPS 2021).

RBSRICNN: Raw Burst Super-Resolution through Iterative Convolutional Neural Network An official PyTorch implementation of the RBSRICNN network as desc

This is a model made out of Neural Network specifically a Convolutional Neural Network model
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternative libraries that can be used for this purpose, one of which is the PyTorch library.

Hierarchical-Bayesian-Defense - Towards Adversarial Robustness of Bayesian Neural Network through Hierarchical Variational Inference (Openreview)
Code for PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing

PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing CVPR 2021. Project page: https://kai-46.github.io/

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these environments (PPO, SAC, evolutionary strategy, and direct trajectory optimization are implemented).

Pytorch Implementation of Interaction Networks for Learning about Objects, Relations and Physics

Interaction-Network-Pytorch Pytorch Implementraion of Interaction Networks for Learning about Objects, Relations and Physics. Interaction Network is a

Comments
  • Do you plan to keep developing this library?

    Do you plan to keep developing this library?

    Hi,

    I'm a SimNet user, and I'm very interested in IDRLNet since the API seems similar, while the backend is PyTorch. Do you plan to keep developing IDRLNet?

    opened by AndreaPi 1
  • Feat: support DeepRitz

    Feat: support DeepRitz

    Weinan, E.; Yu, B. The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Communications in Mathematics and Statistics 2018, 6 (1), 1–12.

    opened by weipengOO98 0
  •  GPU not available

    GPU not available

    Dear all, Thank you for this great contribution!

    I installed the library according to the instructions, but I received this warning: [23-Sep-22 22:28:21] [INFO] GPU not available

    Any suggestions on how to fix this?

    opened by engsbk 0
Releases(v0.1.0)
Owner
IDRL
Intelligent Design and Robust Learning Laboratory
IDRL
Preprossing-loan-data-with-NumPy - In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United States.

Preprossing-loan-data-with-NumPy In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United

Dhawal Chitnavis 2 Jan 03, 2022
PyTorch Implementation for Deep Metric Learning Pipelines

Easily Extendable Basic Deep Metric Learning Pipeline Karsten Roth ([email 

Karsten Roth 543 Jan 04, 2023
A Keras implementation of YOLOv3 (Tensorflow backend)

keras-yolo3 Introduction A Keras implementation of YOLOv3 (Tensorflow backend) inspired by allanzelener/YAD2K. Quick Start Download YOLOv3 weights fro

7.1k Jan 03, 2023
Python implementation of Project Fluent

Project Fluent This is a collection of Python packages to use the Fluent localization system. python-fluent consists of these packages: fluent.syntax

Project Fluent 155 Dec 28, 2022
Multi Agent Reinforcement Learning for ROS in 2D Simulation Environments

IROS21 information To test the code and reproduce the experiments, follow the installation steps in Installation.md. Afterwards, follow the steps in E

11 Oct 29, 2022
PyTorch Implementation of CvT: Introducing Convolutions to Vision Transformers

CvT: Introducing Convolutions to Vision Transformers Pytorch implementation of CvT: Introducing Convolutions to Vision Transformers Usage: img = torch

Rishikesh (ऋषिकेश) 193 Jan 03, 2023
This is the code for the paper "Contrastive Clustering" (AAAI 2021)

Contrastive Clustering (CC) This is the code for the paper "Contrastive Clustering" (AAAI 2021) Dependency python=3.7 pytorch=1.6.0 torchvision=0.8

Yunfan Li 210 Dec 30, 2022
Human Dynamics from Monocular Video with Dynamic Camera Movements

Human Dynamics from Monocular Video with Dynamic Camera Movements Ri Yu, Hwangpil Park and Jehee Lee Seoul National University ACM Transactions on Gra

215 Jan 01, 2023
Sleep staging from ECG, assisted with EEG

Sleep_Staging_Knowledge Distillation This codebase implements knowledge distillation approach for ECG based sleep staging assisted by EEG based sleep

2 Dec 12, 2022
Unofficial Implementation of MLP-Mixer, Image Classification Model

MLP-Mixer Unoffical Implementation of MLP-Mixer, easy to use with terminal. Train and test easly. https://arxiv.org/abs/2105.01601 MLP-Mixer is an arc

Oğuzhan Ercan 6 Dec 05, 2022
NeuTex: Neural Texture Mapping for Volumetric Neural Rendering

NeuTex: Neural Texture Mapping for Volumetric Neural Rendering Paper: https://arxiv.org/abs/2103.00762 Running Run on the provided DTU scene cd run ba

Fanbo Xiang 67 Dec 28, 2022
Yolov5 deepsort inference,使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

813 Dec 31, 2022
Code for the AAAI-2022 paper: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification (AAAI 2022) Prerequisite PyTorch = 1.2.0 P

16 Dec 14, 2022
🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗

🚗 INGI Dakar 2K21 - Be the first one on the finish line ! 🚗 This year's first semester Club Info challenge will put you at the head of a car racing

ClubINFO INGI (UCLouvain) 6 Dec 10, 2021
Bagua is a flexible and performant distributed training algorithm development framework.

Bagua is a flexible and performant distributed training algorithm development framework.

786 Dec 17, 2022
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Contributors of this repo: Zhibo Zhang ( Zhibo (Darren) Zhang 18 Nov 01, 2022

Implementation of Bottleneck Transformer in Pytorch

Bottleneck Transformer - Pytorch Implementation of Bottleneck Transformer, SotA visual recognition model with convolution + attention that outperforms

Phil Wang 621 Jan 06, 2023
Adds timm pretrained backbone to pytorch's FasterRcnn model

Operating Systems Lab (ETCS-352) Experiments for Operating Systems Lab (ETCS-352) performed by me in 2021 at uni. All codes are written by me except t

Mriganka Nath 12 Dec 03, 2022
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
Myia prototyping

Myia Myia is a new differentiable programming language. It aims to support large scale high performance computations (e.g. linear algebra) and their g

Mila 456 Nov 07, 2022