Hierarchical-Bayesian-Defense - Towards Adversarial Robustness of Bayesian Neural Network through Hierarchical Variational Inference (Openreview)

Overview

Towards Adversarial Robustness of Bayesian Neural Network through Hierarchical Variational Inference [paper]

Baseline of this code is the official repository for this paper. We just replace the BNN regularizer from ELBO with enhanced Bayesian regularizer based on hierarchical-ELBO.

Alt text


Citation

If you find this work helpful, please cite it as:

@misc{
lee2021towards,
title={Towards Adversarial Robustness of Bayesian Neural Network through Hierarchical Variational Inference},
author={Byung-Kwan Lee and Youngjoon Yu and Yong Man Ro},
year={2021},
url={https://openreview.net/forum?id=Cue2ZEBf12}
}

Hierarchical-Bayeisan-Defense

Dataset

  • CIFAR10
  • STL10
  • CIFAR100
  • Tiny-ImageNet

Network

  • VGG16 (for CIFAR-10/CIFAR-100/Tiny-ImageNet)
  • Aaron (for STL10)
  • WideResNet (for CIFAR-10/100)

Attack (by torchattack)

  • PGD attack
  • EOT-PGD attack

Defense methods

  • adv: Adversarial training
  • adv_vi: Adversarial training with Bayesian neural network
  • adv_hvi: Adversarial training with Enhanced Bayesian neural network based on hierarchical-ELBO

How to Train

1. Adversarial training

Run train_adv.sh

lr=0.01
steps=10
max_norm=0.03
data=tiny # or `cifar10`, `stl10`, `cifar100`
root=./datasets
model=vgg # vgg for `cifar10` `stl10` `cifar100`, aaron for `stl10`, wide for `cifar10` or `cifar100`
model_out=./checkpoint/${data}_${model}_${max_norm}_adv
echo "Loading: " ${model_out}
CUDA_VISIBLE_DEVICES=0 python ./main_adv.py \
                        --lr ${lr} \
                        --step ${steps} \
                        --max_norm ${max_norm} \
                        --data ${data} \
                        --model ${model} \
                        --root ${root} \
                        --model_out ${model_out}.pth \

2. Adversarial training with BNN

Run train_adv_vi.sh

lr=0.01
steps=10
max_norm=0.03
sigma_0=0.1
init_s=0.1
data=tiny # or `cifar10`, `stl10`, `cifar100`
root=./datasets
model=vgg # vgg for `cifar10` `stl10` `cifar100`, aaron for `stl10`, wide for `cifar10` or `cifar100`
model_out=./checkpoint/${data}_${model}_${max_norm}_adv_vi
echo "Loading: " ${model_out}
CUDA_VISIBLE_DEVICES=0 python3 ./main_adv_vi.py \
                        --lr ${lr} \
                        --step ${steps} \
                        --max_norm ${max_norm} \
                        --sigma_0 ${sigma_0} \
                        --init_s ${init_s} \
                        --data ${data} \
                        --model ${model} \
                        --root ${root} \
                        --model_out ${model_out}.pth \

3. Adversarial training with enhanced Bayesian regularizer based on hierarchical-ELBO

Run train_adv_hvi.sh

lr=0.01
steps=10
max_norm=0.03
sigma_0=0.1
init_s=0.1
data=tiny # or `cifar10`, `stl10`, `cifar100`
root=./datasets
model=vgg # vgg for `cifar10` `stl10` `cifar100`, aaron for `stl10`, wide for `cifar10` or `cifar100`
model_out=./checkpoint/${data}_${model}_${max_norm}_adv_hvi
echo "Loading: " ${model_out}
CUDA_VISIBLE_DEVICES=0 python3 ./main_adv_hvi.py \
                        --lr ${lr} \
                        --step ${steps} \
                        --max_norm ${max_norm} \
                        --sigma_0 ${sigma_0} \
                        --init_s ${init_s} \
                        --data ${data} \
                        --model ${model} \
                        --root ${root} \
                        --model_out ${model_out}.pth \

How to Test

Testing adversarial robustness

Run acc_under_attack.sh

model=vgg # vgg for `cifar10` `stl10` `cifar100`, aaron for `stl10`, wide for `cifar10` or `cifar100`
defense=adv_hvi # or `adv_vi`, `adv`
data=tiny-imagenet # or `cifar10`, `stl10`, `cifar100`
root=./datasets
n_ensemble=50
step=10
max_norm=0.03
echo "Loading" ./checkpoint/${data}_${model}_${max_norm}_${defense}.pth

CUDA_VISIBLE_DEVICES=0 python3 acc_under_attack.py \
    --model $model \
    --defense $defense \
    --data $data \
    --root $root \
    --n_ensemble $n_ensemble \
    --step $step \
    --max_norm $max_norm

How to check the learning parameters and KL divergence

Run check_parameters.sh

model=vgg # vgg for `cifar10` `stl10` `cifar100`, aaron for `stl10`, wide for `cifar10` or `cifar100`
defense=adv_hvi # or `adv_vi`
data=tiny-imagenet # or `cifar10`, `stl10`, `cifar100`
max_norm=0.03
echo "Loading" ./checkpoint/${data}_${model}_${max_norm}_${defense}.pth

CUDA_VISIBLE_DEVICES=0 python3 check_parameters.py \
    --model $model \
    --defense $defense \
    --data $data \
    --max_norm $max_norm \

How to check uncertainty by predictive entropy

Run uncertainty.sh

model=vgg # vgg for `cifar10` `stl10` `cifar100`, aaron for `stl10`, wide for `cifar10` or `cifar100`
defense=adv_hvi # or `adv_vi`
data=tiny-imagenet # or `cifar10`, `stl10`, `cifar100`
root=./datasets
n_ensemble=50
step=10
max_norm=0.03
echo "Loading" ./checkpoint/${data}_${model}_${max_norm}_${defense}.pth

CUDA_VISIBLE_DEVICES=0 python3 uncertainty.py \
    --model $model \
    --defense $defense \
    --data $data \
    --root $root \
    --n_ensemble $n_ensemble \
    --step $step \
    --max_norm $max_norm
Owner
LBK
Ph.D Candidate, KAIST EE
LBK
project page for VinVL

VinVL: Revisiting Visual Representations in Vision-Language Models Updates 02/28/2021: Project page built. Introduction This repository is the project

308 Jan 09, 2023
Official code for our EMNLP2021 Outstanding Paper MindCraft: Theory of Mind Modeling for Situated Dialogue in Collaborative Tasks

MindCraft Authors: Cristian-Paul Bara*, Sky CH-Wang*, Joyce Chai This is the official code repository for the paper (arXiv link): Cristian-Paul Bara,

Situated Language and Embodied Dialogue (SLED) Research Group 14 Dec 29, 2022
AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

Adelaide Intelligent Machines (AIM) Group 3k Jan 02, 2023
⚡ H2G-Net for Semantic Segmentation of Histopathological Images

H2G-Net This repository contains the code relevant for the proposed design H2G-Net, which was introduced in the manuscript "Hybrid guiding: A multi-re

André Pedersen 8 Nov 24, 2022
(CVPR 2022) Pytorch implementation of "Self-supervised transformers for unsupervised object discovery using normalized cut"

(CVPR 2022) TokenCut Pytorch implementation of Tokencut: Self-supervised Transformers for Unsupervised Object Discovery using Normalized Cut Yangtao W

YANGTAO WANG 200 Jan 02, 2023
An extremely simple, intuitive, hardware-friendly, and well-performing network structure for LiDAR semantic segmentation on 2D range image. IROS21

FIDNet_SemanticKITTI Motivation Implementing complicated network modules with only one or two points improvement on hardware is tedious. So here we pr

YimingZhao 54 Dec 12, 2022
LQM - Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstract Object detection aims to locate and classify object instances in ima

IM Lab., POSTECH 0 Sep 28, 2022
An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wheat Detection (2021).

Global-Wheat-Detection An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wh

Chuxin Wang 11 Sep 25, 2022
X-VLM: Multi-Grained Vision Language Pre-Training

X-VLM: learning multi-grained vision language alignments Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts. Yan Zeng, Xi

Yan Zeng 286 Dec 23, 2022
Editing a classifier by rewriting its prediction rules

This repository contains the code and data for our paper: Editing a classifier by rewriting its prediction rules Shibani Santurkar*, Dimitris Tsipras*

Madry Lab 86 Dec 27, 2022
Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021)

T2Net Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021) [Paper][Code] Dependencies numpy==1.18.5 scikit_image==

64 Nov 23, 2022
COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models

COVID-ViT COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models This code is to response to te MIA-COV19 compe

17 Dec 30, 2022
Proof-Of-Concept Piano-Drums Music AI Model/Implementation

Rock Piano "When all is one and one is all, that's what it is to be a rock and not to roll." ---Led Zeppelin, "Stairway To Heaven" Proof-Of-Concept Pi

Alex 4 Nov 28, 2021
Code and datasets for the paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"

KnowPrompt Code and datasets for our paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction" Requireme

ZJUNLP 137 Dec 31, 2022
Source code for TACL paper "KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation".

KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation Source code for TACL 2021 paper KEPLER: A Unified Model for Kn

THU-KEG 138 Dec 22, 2022
Supplementary materials for ISMIR 2021 LBD paper "Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes"

Evaluation of Latent Space Disentanglement in the Presence of Interdependent Attributes Supplementary materials for ISMIR 2021 LBD submission: K. N. W

Karn Watcharasupat 2 Oct 25, 2021
A note taker for NVDA. Allows the user to create, edit, view, manage and export notes to different formats.

Quick Notetaker add-on for NVDA The Quick Notetaker add-on is a wonderful tool which allows writing notes quickly and easily anytime and from any app

5 Dec 06, 2022
Post-training Quantization for Neural Networks with Provable Guarantees

Post-training Quantization for Neural Networks with Provable Guarantees Authors: Jinjie Zhang ( Yixuan Zhou 2 Nov 29, 2022

Experiments for Fake News explainability project

fake-news-explainability Experiments for fake news explainability project This repository only contains the notebooks used to train the models and eva

Lorenzo Flores (Lj) 1 Dec 03, 2022
Pytorch for Segmentation

Pytorch for Semantic Segmentation This repo has been deprecated currently and I will not maintain it. Meanwhile, I strongly recommend you can refer to

ycszen 411 Nov 22, 2022