StyleGAN-Human: A Data-Centric Odyssey of Human Generation

Overview

StyleGAN-Human: A Data-Centric Odyssey of Human Generation

Abstract: Unconditional human image generation is an important task in vision and graphics, which enables various applications in the creative industry. Existing studies in this field mainly focus on "network engineering" such as designing new components and objective functions. This work takes a data-centric perspective and investigates multiple critical aspects in "data engineering", which we believe would complement the current practice. To facilitate a comprehensive study, we collect and annotate a large-scale human image dataset with over 230K samples capturing diverse poses and textures. Equipped with this large dataset, we rigorously investigate three essential factors in data engineering for StyleGAN-based human generation, namely data size, data distribution, and data alignment. Extensive experiments reveal several valuable observations w.r.t. these aspects: 1) Large-scale data, more than 40K images, are needed to train a high-fidelity unconditional human generation model with vanilla StyleGAN. 2) A balanced training set helps improve the generation quality with rare face poses compared to the long-tailed counterpart, whereas simply balancing the clothing texture distribution does not effectively bring an improvement. 3) Human GAN models with body centers for alignment outperform models trained using face centers or pelvis points as alignment anchors. In addition, a model zoo and human editing applications are demonstrated to facilitate future research in the community.
Keyword: Human Image Generation, Data-Centric, StyleGAN

Jianglin Fu, Shikai Li, Yuming Jiang, Kwan-Yee Lin, Chen Qian, Chen Change Loy, Wayne Wu, and Ziwei Liu
[Demo Video] | [Project Page] | [Paper]

Updates

  • [26/04/2022] Technical report released!
  • [22/04/2022] Technical report will be released before May.
  • [21/04/2022] The codebase and project page are created.

Model Zoo

Structure 1024x512 512x256
StyleGAN1 stylegan_human_v1_1024.pkl to be released
StyleGAN2 stylegan_human_v2_1024.pkl stylegan_human_v2_512.pkl
StyleGAN3 to be released stylegan_human_v3_512.pkl

Web Demo

Integrated into Huggingface Spaces 🤗 using Gradio. Try out the Web Demo for generation: Hugging Face Spaces and interpolation Hugging Face Spaces

We prepare a Colab demo to allow you to synthesize images with the provided models, as well as visualize the performance of style-mixing, interpolation, and attributes editing. The notebook will guide you to install the necessary environment and download pretrained models. The output images can be found in ./StyleGAN-Human/outputs/. Hope you enjoy!

Usage

System requirements

Installation

To work with this project on your own machine, you need to install the environmnet as follows:

conda env create -f environment.yml
conda activate stylehuman
# [Optional: tensorflow 1.x is required for StyleGAN1. ]
pip install nvidia-pyindex
pip install nvidia-tensorflow[horovod]
pip install nvidia-tensorboard==1.15

Extra notes:

  1. In case having some conflicts when calling CUDA version, please try to empty the LD_LIBRARY_PATH. For example:
LD_LIBRARY_PATH=; python generate.py --outdir=out/stylegan_human_v2_1024 --trunc=1 --seeds=1,3,5,7 
--network=pretrained_models/stylegan_human_v2_1024.pkl --version 2
  1. We found the following troubleshooting links might be helpful: 1., 2.

Pretrained models

Please put the downloaded pretrained models from above link under the folder 'pretrained_models'.

Generate full-body human images using our pretrained model

# Generate human full-body images without truncation
python generate.py --outdir=outputs/generate/stylegan_human_v2_1024 --trunc=1 --seeds=1,3,5,7 --network=pretrained_models/stylegan_human_v2_1024.pkl --version 2

# Generate human full-body images with truncation 
python generate.py --outdir=outputs/generate/stylegan_human_v2_1024 --trunc=0.8 --seeds=0-10 --network=pretrained_models/stylegan_human_v2_1024.pkl --version 2

# Generate human full-body images using stylegan V1
python generate.py --outdir=outputs/generate/stylegan_human_v1_1024 --network=pretrained_models/stylegan_human_v1_1024.pkl --version 1 --seeds=1,3,5

# Generate human full-body images using stylegan V3
python generate.py --outdir=outputs/generate/stylegan_human_v3_512 --network=pretrained_models/stylegan_human_v3_512.pkl --version 3 --seeds=1,3,5

Note: The following demos are generated based on models related to StyleGAN V2 (stylegan_human_v2_512.pkl and stylegan_human_v2_1024.pkl). If you want to see results for V1 or V3, you need to change the loading method of the corresponding models.

Interpolation

python interpolation.py --network=pretrained_models/stylegan_human_v2_1024.pkl  --seeds=85,100 --outdir=outputs/inter_gifs

Style-mixing image using stylegan2

python style_mixing.py --network=pretrained_models/stylegan_human_v2_1024.pkl --rows=85,100,75,458,1500 \\
    --cols=55,821,1789,293 --styles=0-3 --outdir=outputs/stylemixing 

Style-mixing video using stylegan2

python stylemixing_video.py --network=pretrained_models/stylegan_human_v2_1024.pkl --row-seed=3859 \\
    --col-seeds=3098,31759,3791 --col-styles=8-12 --trunc=0.8 --outdir=outputs/stylemixing_video

Editing with InterfaceGAN, StyleSpace, and Sefa

python edit.py --network pretrained_models/stylegan_human_v2_1024.pkl --attr_name upper_length \\
    --seeds 61531,61570,61571,61610 --outdir outputs/edit_results

Note:

  1. ''upper_length'' and ''bottom_length'' of ''attr_name'' are available for demo.
  2. Layers to control and editing strength are set in edit/edit_config.py.

Demo for InsetGAN

We implement a quick demo using the key idea from InsetGAN: combining the face generated by FFHQ with the human-body generated by our pretrained model, optimizing both face and body latent codes to get a coherent full-body image. Before running the script, you need to download the FFHQ face model, or you can use your own face model, as well as pretrained face landmark and pretrained CNN face detection model for dlib

python insetgan.py --body_network=pretrained_models/stylegan_human_v2_1024.pkl --face_network=pretrained_models/ffhq.pkl \\
    --body_seed=82 --face_seed=43  --trunc=0.6 --outdir=outputs/insetgan/ --video 1 

Results

Editing

InsetGAN re-implementation

For more demo, please visit our web page .

TODO List

  • Release 1024x512 version of StyleGAN-Human based on StyleGAN3
  • Release 512x256 version of StyleGAN-Human based on StyleGAN1
  • Extension of downstream application (InsetGAN): Add face inversion interface to support fusing user face image and stylegen-human body image
  • Add Inversion Script into the provided editing pipeline
  • Release Dataset

Citation

If you find this work useful for your research, please consider citing our paper:

@article{fu2022styleganhuman,
      title={StyleGAN-Human: A Data-Centric Odyssey of Human Generation}, 
      author={Fu, Jianglin and Li, Shikai and Jiang, Yuming and Lin, Kwan-Yee and Qian, Chen and Loy, Chen-Change and Wu, Wayne and Liu, Ziwei},
      journal   = {arXiv preprint},
      volume    = {arXiv:2204.11823},
      year    = {2022}

Acknowlegement

Part of the code is borrowed from stylegan (tensorflow), stylegan2-ada (pytorch), stylegan3 (pytorch).

Owner
stylegan-human
stylegan-human
MegEngine implementation of YOLOX

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

旷视天元 MegEngine 77 Nov 22, 2022
Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022)

Blockwise Sequential Model Learning Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022) For ins

2 Jun 17, 2022
Official implementation of the ICCV 2021 paper "Joint Inductive and Transductive Learning for Video Object Segmentation"

JOINT This is the official implementation of Joint Inductive and Transductive learning for Video Object Segmentation, to appear in ICCV 2021. @inproce

Yunyao 35 Oct 16, 2022
The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021)

The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021) Arash Vahdat*   ·   Karsten Kreis*   ·  

NVIDIA Research Projects 238 Jan 02, 2023
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
TLoL (Python Module) - League of Legends Deep Learning AI (Research and Development)

TLoL-py - League of Legends Deep Learning Library TLoL-py is the Python component of the TLoL League of Legends deep learning library. It provides a s

7 Nov 29, 2022
Self-supervised learning (SSL) is a method of machine learning

Self-supervised learning (SSL) is a method of machine learning. It learns from unlabeled sample data. It can be regarded as an intermediate form between supervised and unsupervised learning.

Ashish Patel 4 May 26, 2022
Unofficial implementation of Pix2SEQ

Unofficial-Pix2seq: A Language Modeling Framework for Object Detection Unofficial implementation of Pix2SEQ. Please use this code with causion. Many i

159 Dec 12, 2022
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)

NExT-QA We reproduce some SOTA VideoQA methods to provide benchmark results for our NExT-QA dataset accepted to CVPR2021 (with 1 'Strong Accept' and 2

Junbin Xiao 50 Nov 24, 2022
Code for C2-Matching (CVPR2021). Paper: Robust Reference-based Super-Resolution via C2-Matching.

C2-Matching (CVPR2021) This repository contains the implementation of the following paper: Robust Reference-based Super-Resolution via C2-Matching Yum

Yuming Jiang 151 Dec 26, 2022
Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh

generate_cloud_points Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh. Run python disp_mesh.py Or you

Peng Yu 2 Dec 24, 2021
Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models

Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models This repo contains a barebones implementation for the atta

16 Dec 04, 2022
An implementation of Fastformer: Additive Attention Can Be All You Need in TensorFlow

Fast Transformer This repo implements Fastformer: Additive Attention Can Be All You Need by Wu et al. in TensorFlow. Fast Transformer is a Transformer

Rishit Dagli 139 Dec 28, 2022
Real-Time and Accurate Full-Body Multi-Person Pose Estimation&Tracking System

News! Aug 2020: v0.4.0 version of AlphaPose is released! Stronger tracking! Include whole body(face,hand,foot) keypoints! Colab now available. Dec 201

Machine Vision and Intelligence Group @ SJTU 6.7k Dec 28, 2022
TransPrompt - Towards an Automatic Transferable Prompting Framework for Few-shot Text Classification

TransPrompt This code is implement for our EMNLP 2021's paper 《TransPrompt:Towards an Automatic Transferable Prompting Framework for Few-shot Text Cla

WangJianing 23 Dec 21, 2022
Binary Passage Retriever (BPR) - an efficient passage retriever for open-domain question answering

BPR Binary Passage Retriever (BPR) is an efficient neural retrieval model for open-domain question answering. BPR integrates a learning-to-hash techni

Studio Ousia 147 Dec 07, 2022
Directed Greybox Fuzzing with AFL

AFLGo: Directed Greybox Fuzzing AFLGo is an extension of American Fuzzy Lop (AFL). Given a set of target locations (e.g., folder/file.c:582), AFLGo ge

380 Nov 24, 2022
Employs neural networks to classify images into four categories: ship, automobile, dog or frog

Neural Net Image Classifier Employs neural networks to classify images into four categories: ship, automobile, dog or frog Viterbi_1.py uses a classic

Riley Baker 1 Jan 18, 2022
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023