StyleGAN-Human: A Data-Centric Odyssey of Human Generation

Overview

StyleGAN-Human: A Data-Centric Odyssey of Human Generation

Abstract: Unconditional human image generation is an important task in vision and graphics, which enables various applications in the creative industry. Existing studies in this field mainly focus on "network engineering" such as designing new components and objective functions. This work takes a data-centric perspective and investigates multiple critical aspects in "data engineering", which we believe would complement the current practice. To facilitate a comprehensive study, we collect and annotate a large-scale human image dataset with over 230K samples capturing diverse poses and textures. Equipped with this large dataset, we rigorously investigate three essential factors in data engineering for StyleGAN-based human generation, namely data size, data distribution, and data alignment. Extensive experiments reveal several valuable observations w.r.t. these aspects: 1) Large-scale data, more than 40K images, are needed to train a high-fidelity unconditional human generation model with vanilla StyleGAN. 2) A balanced training set helps improve the generation quality with rare face poses compared to the long-tailed counterpart, whereas simply balancing the clothing texture distribution does not effectively bring an improvement. 3) Human GAN models with body centers for alignment outperform models trained using face centers or pelvis points as alignment anchors. In addition, a model zoo and human editing applications are demonstrated to facilitate future research in the community.
Keyword: Human Image Generation, Data-Centric, StyleGAN

Jianglin Fu, Shikai Li, Yuming Jiang, Kwan-Yee Lin, Chen Qian, Chen Change Loy, Wayne Wu, and Ziwei Liu
[Demo Video] | [Project Page] | [Paper]

Updates

  • [26/04/2022] Technical report released!
  • [22/04/2022] Technical report will be released before May.
  • [21/04/2022] The codebase and project page are created.

Model Zoo

Structure 1024x512 512x256
StyleGAN1 stylegan_human_v1_1024.pkl to be released
StyleGAN2 stylegan_human_v2_1024.pkl stylegan_human_v2_512.pkl
StyleGAN3 to be released stylegan_human_v3_512.pkl

Web Demo

Integrated into Huggingface Spaces 🤗 using Gradio. Try out the Web Demo for generation: Hugging Face Spaces and interpolation Hugging Face Spaces

We prepare a Colab demo to allow you to synthesize images with the provided models, as well as visualize the performance of style-mixing, interpolation, and attributes editing. The notebook will guide you to install the necessary environment and download pretrained models. The output images can be found in ./StyleGAN-Human/outputs/. Hope you enjoy!

Usage

System requirements

Installation

To work with this project on your own machine, you need to install the environmnet as follows:

conda env create -f environment.yml
conda activate stylehuman
# [Optional: tensorflow 1.x is required for StyleGAN1. ]
pip install nvidia-pyindex
pip install nvidia-tensorflow[horovod]
pip install nvidia-tensorboard==1.15

Extra notes:

  1. In case having some conflicts when calling CUDA version, please try to empty the LD_LIBRARY_PATH. For example:
LD_LIBRARY_PATH=; python generate.py --outdir=out/stylegan_human_v2_1024 --trunc=1 --seeds=1,3,5,7 
--network=pretrained_models/stylegan_human_v2_1024.pkl --version 2
  1. We found the following troubleshooting links might be helpful: 1., 2.

Pretrained models

Please put the downloaded pretrained models from above link under the folder 'pretrained_models'.

Generate full-body human images using our pretrained model

# Generate human full-body images without truncation
python generate.py --outdir=outputs/generate/stylegan_human_v2_1024 --trunc=1 --seeds=1,3,5,7 --network=pretrained_models/stylegan_human_v2_1024.pkl --version 2

# Generate human full-body images with truncation 
python generate.py --outdir=outputs/generate/stylegan_human_v2_1024 --trunc=0.8 --seeds=0-10 --network=pretrained_models/stylegan_human_v2_1024.pkl --version 2

# Generate human full-body images using stylegan V1
python generate.py --outdir=outputs/generate/stylegan_human_v1_1024 --network=pretrained_models/stylegan_human_v1_1024.pkl --version 1 --seeds=1,3,5

# Generate human full-body images using stylegan V3
python generate.py --outdir=outputs/generate/stylegan_human_v3_512 --network=pretrained_models/stylegan_human_v3_512.pkl --version 3 --seeds=1,3,5

Note: The following demos are generated based on models related to StyleGAN V2 (stylegan_human_v2_512.pkl and stylegan_human_v2_1024.pkl). If you want to see results for V1 or V3, you need to change the loading method of the corresponding models.

Interpolation

python interpolation.py --network=pretrained_models/stylegan_human_v2_1024.pkl  --seeds=85,100 --outdir=outputs/inter_gifs

Style-mixing image using stylegan2

python style_mixing.py --network=pretrained_models/stylegan_human_v2_1024.pkl --rows=85,100,75,458,1500 \\
    --cols=55,821,1789,293 --styles=0-3 --outdir=outputs/stylemixing 

Style-mixing video using stylegan2

python stylemixing_video.py --network=pretrained_models/stylegan_human_v2_1024.pkl --row-seed=3859 \\
    --col-seeds=3098,31759,3791 --col-styles=8-12 --trunc=0.8 --outdir=outputs/stylemixing_video

Editing with InterfaceGAN, StyleSpace, and Sefa

python edit.py --network pretrained_models/stylegan_human_v2_1024.pkl --attr_name upper_length \\
    --seeds 61531,61570,61571,61610 --outdir outputs/edit_results

Note:

  1. ''upper_length'' and ''bottom_length'' of ''attr_name'' are available for demo.
  2. Layers to control and editing strength are set in edit/edit_config.py.

Demo for InsetGAN

We implement a quick demo using the key idea from InsetGAN: combining the face generated by FFHQ with the human-body generated by our pretrained model, optimizing both face and body latent codes to get a coherent full-body image. Before running the script, you need to download the FFHQ face model, or you can use your own face model, as well as pretrained face landmark and pretrained CNN face detection model for dlib

python insetgan.py --body_network=pretrained_models/stylegan_human_v2_1024.pkl --face_network=pretrained_models/ffhq.pkl \\
    --body_seed=82 --face_seed=43  --trunc=0.6 --outdir=outputs/insetgan/ --video 1 

Results

Editing

InsetGAN re-implementation

For more demo, please visit our web page .

TODO List

  • Release 1024x512 version of StyleGAN-Human based on StyleGAN3
  • Release 512x256 version of StyleGAN-Human based on StyleGAN1
  • Extension of downstream application (InsetGAN): Add face inversion interface to support fusing user face image and stylegen-human body image
  • Add Inversion Script into the provided editing pipeline
  • Release Dataset

Citation

If you find this work useful for your research, please consider citing our paper:

@article{fu2022styleganhuman,
      title={StyleGAN-Human: A Data-Centric Odyssey of Human Generation}, 
      author={Fu, Jianglin and Li, Shikai and Jiang, Yuming and Lin, Kwan-Yee and Qian, Chen and Loy, Chen-Change and Wu, Wayne and Liu, Ziwei},
      journal   = {arXiv preprint},
      volume    = {arXiv:2204.11823},
      year    = {2022}

Acknowlegement

Part of the code is borrowed from stylegan (tensorflow), stylegan2-ada (pytorch), stylegan3 (pytorch).

Owner
stylegan-human
stylegan-human
Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training Code for our paper "Predicting lncRNA–protein interactio

zhanglabNKU 1 Nov 29, 2022
Face and other object detection using OpenCV and ML Yolo

Object-and-Face-Detection-Using-Yolo- Opencv and YOLO object and face detection is implemented. You only look once (YOLO) is a state-of-the-art, real-

Happy N. Monday 3 Feb 15, 2022
The Body Part Regression (BPR) model translates the anatomy in a radiologic volume into a machine-interpretable form.

Copyright © German Cancer Research Center (DKFZ), Division of Medical Image Computing (MIC). Please make sure that your usage of this code is in compl

MIC-DKFZ 40 Dec 18, 2022
Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation

Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation The code of: Context Decoupling Augmentation for Weakly Supervised Semanti

54 Dec 12, 2022
EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
Code for the Paper: Conditional Variational Capsule Network for Open Set Recognition

Conditional Variational Capsule Network for Open Set Recognition This repository hosts the official code related to "Conditional Variational Capsule N

Guglielmo Camporese 35 Nov 21, 2022
SLIDE : In Defense of Smart Algorithms over Hardware Acceleration for Large-Scale Deep Learning Systems

The SLIDE package contains the source code for reproducing the main experiments in this paper. Dataset The Datasets can be downloaded in Amazon-

Intel Labs 72 Dec 16, 2022
[TOG 2021] PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling.

This repository contains the official PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling. We propose a SofGAN image generator to decouple the latent space o

Anpei Chen 694 Dec 23, 2022
Train Scene Graph Generation for Visual Genome and GQA in PyTorch >= 1.2 with improved zero and few-shot generalization.

Scene Graph Generation Object Detections Ground truth Scene Graph Generated Scene Graph In this visualization, woman sitting on rock is a zero-shot tr

Boris Knyazev 93 Dec 28, 2022
This code is an implementation for Singing TTS.

MLP Singer This code is an implementation for Singing TTS. The algorithm is based on the following papers: Tae, J., Kim, H., & Lee, Y. (2021). MLP Sin

Heejo You 22 Dec 23, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models This repo contains code for DDPM training. Based on Denoising Diffusion Probabilistic Models, Improved Denois

Alexander Markov 7 Dec 15, 2022
Official repository for "Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring".

RNN-MBP Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring (AAAI-2022) by Chao Zhu, Hang Dong, Jinshan Pan

SIV-LAB 22 Aug 31, 2022
Pytorch implementation of ICASSP 2022 paper Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

IIGROUP 6 Sep 21, 2022
Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning

CSRL Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning Python: 3

4 Apr 14, 2022
mPose3D, a mmWave-based 3D human pose estimation model.

mPose3D, a mmWave-based 3D human pose estimation model.

KylinChen 35 Nov 08, 2022
Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight) Demo | Paper [NEW!] Time to play with our interac

Shengyu Zhao 373 Jan 02, 2023
Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Generated Images"

Reverse_Engineering_GMs Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Gener

100 Dec 18, 2022
Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images

Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images This repository contains the implementation of the following paper

Seonggwan Ko 9 Jul 30, 2022
Rethinking the U-Net architecture for multimodal biomedical image segmentation

MultiResUNet Rethinking the U-Net architecture for multimodal biomedical image segmentation This repository contains the original implementation of "M

Nabil Ibtehaz 308 Jan 05, 2023