Unofficial implementation of Pix2SEQ

Overview

Unofficial-Pix2seq: A Language Modeling Framework for Object Detection

Unofficial implementation of Pix2SEQ. Please use this code with causion. Many implemtation details are not following original paper and significantly simplified.

Aim

This project aims for a step by step replication of Pix2Seq starting from DETR codebase.

Step 1

Starting from DETR, we add bounding box quantization over normalized coordinate, sequence generator from normalized coordinate, auto-regressive decoder and training code for Pix2SEQ.

How to use?

Install packages following original DETR and command line is same as DETR.

By setting image size to 512, each epoch takes 3 minutes on 8 A100 GPU.

python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --coco_path ../../data/coco/

Released at 8pm, 26th, Seq

Problem to be solved : 1) better logging 2) correct padding, end of sentence, start of sentence token 3) efficient padding 4) better organization of code 5) fixed order of bounding box 6) shared dictionary between position and category

Released at 10pm, 26th, Seq

Problem to be solved: 1) better organization of code 2) fixed order of bounding box

Step 2

Finish inference code of pix2seq and report performance on object detection benchmark. Note that we are going to write an inefficent greedy decoding. The progress can be significantly accelerated by following cache previous state in Fairseq. The quality can be improved by nucleus sampling and beam search. We leave these complex but engineering tricks for future implementation and keep the project as simple as possible for understanding language modeling object detection.

python -m torch.distributed.launch --nproc_per_node=8 --use_env main.py --coco_path ../../data/coco/  --eval --resume checkpoint.pth --batch_size 4

After 30 epoches training, our replication of pix2seq can achieve 12.1 mAP on MSCOCO. Image resolution 512 for fast training.

COCO bbox detection val5k evaluation with maximum 25 boundingx box predictions (Original paper 100 bounding box):

IoU metric: bbox
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.121
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.239
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.107
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.007
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.091
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.267
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.144
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.166
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.166
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.011
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.128
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.350

After 107 epoches training, our replication of pix2seq can achieve 17.9 mAP on MSCOCO. Image resolution 512 for fast training. Checkpoint can be downloaded at here.

COCO bbox detection val5k evaluation with maximum 25 boundingx box predictions (Original paper 100 bounding box):

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.179
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.314
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.177
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.021
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.157
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.375
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.191
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.233
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.233
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.028
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.210
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.469

Observation

(1). The sequence is tend to generate End of Sentence(EOS) early. After generating EOS token, langauge modeling will still genrate boudning box. (2). Repeatable sequence which is a common problem in seq2seq modeling.

Released at 10am, 28th, Seq

Problem to be solved : 1). Add sequence likelihood evaluationn on validation dataset. 2) Better organization of code. 3) FP16 support. 4) Beam Search

Step 3

Add tricks proposed in Pix2SEQ like droplayer, bounding box augmentation, multiple crop augmentation and so on.

Acknowledegement

This codebase heavily borrow from DETR, CART, minGPT and Fairseq and motivated by the method explained in Pix2Seq

Conceptual 12M is a dataset containing (image-URL, caption) pairs collected for vision-and-language pre-training.

Conceptual 12M We introduce the Conceptual 12M (CC12M), a dataset with ~12 million image-text pairs meant to be used for vision-and-language pre-train

Google Research Datasets 226 Dec 07, 2022
Adaptive, interpretable wavelets across domains (NeurIPS 2021)

Adaptive wavelets Wavelets which adapt given data (and optionally a pre-trained model). This yields models which are faster, more compressible, and mo

Yu Group 50 Dec 16, 2022
Gesture-Volume-Control - This Python program can adjust the system's volume by using hand gestures

Gesture-Volume-Control This Python program can adjust the system's volume by usi

VatsalAryanBhatanagar 1 Dec 30, 2021
This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom Binding Challenge

UmojaHack-Africa-2022-African-Snake-Antivenom-Binding-Challenge This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom

Mami Mokhtar 10 Dec 03, 2022
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021) Alexey Nekrasov*, Jonas Schult*, Or Litany, Bastian Leibe, Francis Engelmann Mix3D is

Alexey Nekrasov 189 Dec 26, 2022
Data augmentation for NLP, accepted at EMNLP 2021 Findings

AEDA: An Easier Data Augmentation Technique for Text Classification This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Techni

Akbar Karimi 81 Dec 09, 2022
Official repository for "Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring".

RNN-MBP Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring (AAAI-2022) by Chao Zhu, Hang Dong, Jinshan Pan

SIV-LAB 22 Aug 31, 2022
Lolviz - A simple Python data-structure visualization tool for lists of lists, lists, dictionaries; primarily for use in Jupyter notebooks / presentations

lolviz By Terence Parr. See Explained.ai for more stuff. A very nice looking javascript lolviz port with improvements by Adnan M.Sagar. A simple Pytho

Terence Parr 785 Dec 30, 2022
Kaggle Feedback Prize - Evaluating Student Writing 15th solution

Kaggle Feedback Prize - Evaluating Student Writing 15th solution First of all, I would like to thank the excellent notebooks and discussions from http

Lingyuan Zhang 6 Mar 24, 2022
J.A.R.V.I.S is an AI virtual assistant made in python.

J.A.R.V.I.S is an AI virtual assistant made in python. Running JARVIS Without Python To run JARVIS without python: 1. Head over to our installation pa

somePythonProgrammer 16 Dec 29, 2022
PRIME: A Few Primitives Can Boost Robustness to Common Corruptions

PRIME: A Few Primitives Can Boost Robustness to Common Corruptions This is the official repository of PRIME, the data agumentation method introduced i

Apostolos Modas 34 Oct 30, 2022
Deeper DCGAN with AE stabilization

AEGeAN Deeper DCGAN with AE stabilization Parallel training of generative adversarial network as an autoencoder with dedicated losses for each stage.

Tyler Kvochick 36 Feb 17, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Dynamic View Synthesis from Dynamic Monocular Video Project Website | Video | Paper Dynamic View Synthesis from Dynamic Monocular Video Chen Gao, Ayus

Chen Gao 139 Dec 28, 2022
Demo code for paper "Learning optical flow from still images", CVPR 2021.

Depthstillation Demo code for "Learning optical flow from still images", CVPR 2021. [Project page] - [Paper] - [Supplementary] This code is provided t

130 Dec 25, 2022
As a part of the HAKE project, includes the reproduced SOTA models and the corresponding HAKE-enhanced versions (CVPR2020).

HAKE-Action HAKE-Action (TensorFlow) is a project to open the SOTA action understanding studies based on our Human Activity Knowledge Engine. It inclu

Yong-Lu Li 94 Nov 18, 2022
Voice of Pajlada with model and weights.

Pajlada TTS Stripped down version of ForwardTacotron (https://github.com/as-ideas/ForwardTacotron) with pretrained weights for Pajlada's (https://gith

6 Sep 03, 2021
Ipython notebook presentations for getting starting with basic programming, statistics and machine learning techniques

Data Science 45-min Intros Every week*, our data science team @Gnip (aka @TwitterBoulder) gets together for about 50 minutes to learn something. While

Scott Hendrickson 1.6k Dec 31, 2022
Automate issue discovery for your projects against Lightning nightly and releases.

Automated Testing for Lightning EcoSystem Projects Automate issue discovery for your projects against Lightning nightly and releases. You get CPUs, Mu

Pytorch Lightning 41 Dec 24, 2022
This package contains deep learning models and related scripts for RoseTTAFold

RoseTTAFold This package contains deep learning models and related scripts to run RoseTTAFold This repository is the official implementation of RoseTT

1.6k Jan 03, 2023