NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework

Related tags

Deep LearningTLM
Overview

NLP From Scratch Without Large-Scale Pretraining

This repository contains the code, pre-trained model checkpoints and curated datasets for our paper: NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework.

In our proposed framework, named TLM (task-driven language modeling), instead of training a language model over the entire general corpus and then finetuning it on task data, we first usetask data as queries to retrieve a tiny subset of the general corpus, and then perform joint learning on both the task objective and self-supervised language modeling objective.

Requirements

We implement our models and training loops based on the opensource products from HuggingFace. The core denpencies of this repository are listed in requirements.txt, which can be installed through:

pip install -r requirements.txt

All our experiments are conducted on a node with 8 A100 40GB SXM gpus. Different computational devices may result slightly different results from the reported ones.

Models and Datasets

We release the trained models on 8 tasks with 3 different scales, together with the task datasets and selected external data. Our released model checkpoints, datasets and the performance of each model for each task are listed in the following table.

AGNews Hyp. Help. IMDB ACL. SciERC Chem. RCT
Small 93.74 93.53 70.54 93.08 69.84 80.51 81.99 86.99
Medium 93.96 94.05 70.90 93.97 72.37 81.88 83.24 87.28
Large 94.36 95.16 72.49 95.77 72.19 83.29 85.12 87.50

The released models and datasets are compatible with HuggingFace's Transformers and Datasets. We provide an example script to evaluate a model checkpoints on a certain task, run

bash example_scripts/evaluate.sh

To get the evaluation results for SciERC with a small-scale model.

Training

We provide two example scripts to train a model from scratch, run

bash example_scripts/train.sh && bash example_scripts/finetune.sh

To train a small-scale model for SciERC. Here example_scripts/train.sh corresponds to the first stage training where the external data ratio and MLM weight are non-zero, and example_scripts/finetune.sh corresponds to the second training stage where no external data or self-supervised loss can be perceived by the model.

Citation

Please cite our paper if you use TLM in your work:

@misc{yao2021tlm,
title={NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework},
author={Yao, Xingcheng and Zheng, Yanan and Yang, Xiaocong and Yang, Zhilin},
year={2021}
}
Owner
Xingcheng Yao
Undergraduate student at IIIS, Tsinghua University
Xingcheng Yao
1st place solution in CCF BDCI 2021 ULSEG challenge

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size

NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size Xuanyi Dong, Lu Liu, Katarzyna Musial, Bogdan Gabrys in IEEE Transactions o

D-X-Y 137 Dec 20, 2022
Human segmentation models, training/inference code, and trained weights, implemented in PyTorch

Human-Segmentation-PyTorch Human segmentation models, training/inference code, and trained weights, implemented in PyTorch. Supported networks UNet: b

Thuy Ng 474 Dec 19, 2022
Stochastic gradient descent with model building

Stochastic Model Building (SMB) This repository includes a new fast and robust stochastic optimization algorithm for training deep learning models. Th

S. Ilker Birbil 22 Jan 19, 2022
This repository contains the code for "Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based Bias in NLP".

Self-Diagnosis and Self-Debiasing This repository contains the source code for Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based

Timo Schick 62 Dec 12, 2022
Prototypical Cross-Attention Networks for Multiple Object Tracking and Segmentation, NeurIPS 2021 Spotlight

PCAN for Multiple Object Tracking and Segmentation This is the offical implementation of paper PCAN for MOTS. We also present a trailer that consists

ETH VIS Group 328 Dec 29, 2022
Exploring the link between uncertainty estimates obtained via "exact" Bayesian inference and out-of-distribution (OOD) detection.

Uncertainty-based OOD detection Exploring the link between uncertainty estimates obtained by "exact" Bayesian inference and out-of-distribution (OOD)

Christian Henning 1 Nov 05, 2022
Bunch of different tools which helps visualizing and annotating images for semantic/instance segmentation tasks

Data Framework for Semantic/Instance Segmentation Bunch of different tools which helps visualizing, transforming and annotating images for semantic/in

Bruno Fernandes Carvalho 5 Dec 21, 2022
Self-Supervised Monocular DepthEstimation with Internal Feature Fusion(arXiv), BMVC2021

DIFFNet This repo is for Self-Supervised Monocular Depth Estimation with Internal Feature Fusion(arXiv), BMVC2021 A new backbone for self-supervised d

Hang 94 Dec 25, 2022
Image Deblurring using Generative Adversarial Networks

DeblurGAN arXiv Paper Version Pytorch implementation of the paper DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. Our netwo

Orest Kupyn 2.2k Jan 01, 2023
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
DCGAN-tensorflow - A tensorflow implementation of Deep Convolutional Generative Adversarial Networks

DCGAN in Tensorflow Tensorflow implementation of Deep Convolutional Generative Adversarial Networks which is a stabilize Generative Adversarial Networ

Taehoon Kim 7.1k Dec 29, 2022
Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model

155 Oct 27, 2022
prior-based-losses-for-medical-image-segmentation

Repository for papers: Benchmark: Effect of Prior-based Losses on Segmentation Performance: A Benchmark Midl: A Surprisingly Effective Perimeter-based

Rosana EL JURDI 9 Sep 07, 2022
RAMA: Rapid algorithm for multicut problem

RAMA: Rapid algorithm for multicut problem Solves multicut (correlation clustering) problems orders of magnitude faster than CPU based solvers without

Paul Swoboda 60 Dec 13, 2022
The official PyTorch implementation of Curriculum by Smoothing (NeurIPS 2020, Spotlight).

Curriculum by Smoothing (NeurIPS 2020) The official PyTorch implementation of Curriculum by Smoothing (NeurIPS 2020, Spotlight). For any questions reg

PAIR Lab 36 Nov 23, 2022
HyDiff: Hybrid Differential Software Analysis

HyDiff: Hybrid Differential Software Analysis This repository provides the tool and the evaluation subjects for the paper HyDiff: Hybrid Differential

Yannic Noller 22 Oct 20, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
A neuroanatomy-based augmented reality experience powered by computer vision. Features 3D visuals of the Atlas Brain Map slices.

Brain Augmented Reality (AR) A neuroanatomy-based augmented reality experience powered by computer vision that features 3D visuals of the Atlas Brain

Yasmeen Brain 10 Oct 06, 2022
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra

VITA 77 Oct 05, 2022