RAMA: Rapid algorithm for multicut problem

Related tags

Deep LearningRAMA
Overview

RAMA: Rapid algorithm for multicut problem

Solves multicut (correlation clustering) problems orders of magnitude faster than CPU based solvers without compromising solution quality on NVIDIA GPU. It also gives lower bound guarantees. Paper available here.

animation

Requirements

We use CUDA 11.2 and GCC 10. Other combinations might also work but not tested. CMake is required for compilation.

Installation

C++ solver:

mkdir build
cd build
cmake ..
make -j 4

Python bindings:

We also provide python bindings using pybind. Simply run the following command:

python -m pip install git+https://github.com/pawelswoboda/RAMA.git

Usage

C++ solver:

We require multicut instance stored in a (.txt) file in the following format:

MULTICUT
i_1, j_1, cost_1
i_2, j_2, cost_2
...
i_n, j_n, cost_n

which corresponds to a graph with N edges. Where i and j should be vertex indices and cost is a floating point number. Positive costs implies that the nodes are similar and thus would prefer to be in same component and viceversa. Afterwards run:

./rama_text_input -f <PATH_TO_MULTICUT_INSTANCE>

For more details and downloading multicut instances see LPMP.

Python solver:

An example to compute multicut on a triangle graph:

import rama_py
rama_py.rama_cuda([0, 1, 2], [1, 2, 0], [1.1, -2, 3], rama_py.multicut_solver_options()) 

Parameters:

The default set of parameters are defined here which correspond to algorithm PD from the paper. This algorithm offers best compute time versus solution quality trade-off. Parameters for other variants are:

  • Fast purely primal algorithm (P): This algorithm can be slightly worse than sequential CPU heuristics but is 30 to 50 times faster.
    ./rama_text_input -f <PATH_TO_MULTICUT_INSTANCE> 0 0 0 0
  • Best primal algorithm (PD+) : This algorithm can even be better than CPU solvers in terms of solution quality as it uses dual information. Still, it is 5 to 10 faster than best CPU solver.
     ./rama_text_input -f <PATH_TO_MULTICUT_INSTANCE> 5 10 5 10
  • Dual algorithm (D): Use this algorithm for only computing the lower bound. Our lower bounds are slightly better than ICP and are computed up to 100 times faster.
     ./rama_text_input -f <PATH_TO_MULTICUT_INSTANCE> 5 10 0 0 5

Run ./rama_text_input --help for details about the parameters.

Owner
Paul Swoboda
Paul Swoboda
Official PyTorch implementation of StyleGAN3

Modified StyleGAN3 Repo Changes Made tied to python 3.7 syntax .jpgs instead of .pngs for training sample seeds to recreate the 1024 training grid wit

Derrick Schultz (he/him) 83 Dec 15, 2022
(3DV 2021 Oral) Filtering by Cluster Consistency for Large-Scale Multi-Image Matching

Scalable Cluster-Consistency Statistics for Robust Multi-Object Matching (3DV 2021 Oral Presentation) Filtering by Cluster Consistency (FCC) is a very

Yunpeng Shi 11 Sep 28, 2022
PyAF is an Open Source Python library for Automatic Time Series Forecasting built on top of popular pydata modules.

PyAF (Python Automatic Forecasting) PyAF is an Open Source Python library for Automatic Forecasting built on top of popular data science python module

CARME Antoine 405 Jan 02, 2023
Sub-tomogram-Detection - Deep learning based model for Cyro ET Sub-tomogram-Detection

Deep learning based model for Cyro ET Sub-tomogram-Detection High degree of stru

Siddhant Kumar 2 Feb 04, 2022
Pytorch codes for "Self-supervised Multi-view Stereo via Effective Co-Segmentation and Data-Augmentation"

Self-Supervised-MVS This repository is the official PyTorch implementation of our AAAI 2021 paper: "Self-supervised Multi-view Stereo via Effective Co

hongbin_xu 127 Jan 04, 2023
This is a Deep Leaning API for classifying emotions from human face and human audios.

Emotion AI This is a Deep Leaning API for classifying emotions from human face and human audios. Starting the server To start the server first you nee

crispengari 5 Oct 02, 2022
Efficient and Scalable Physics-Informed Deep Learning and Scientific Machine Learning on top of Tensorflow for multi-worker distributed computing

Notice: Support for Python 3.6 will be dropped in v.0.2.1, please plan accordingly! Efficient and Scalable Physics-Informed Deep Learning Collocation-

tensordiffeq 74 Dec 09, 2022
[CVPR 2021] A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts

Visual-Reasoning-eXplanation [CVPR 2021 A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts] Project Page | Vid

Andy_Ge 54 Dec 21, 2022
Create Data & AI apps in 20 lines of code with Shimoku

Install with: pip install shimoku-api-python Start with: from os import getenv import shimoku_api_python.client as Shimoku

Shimoku 5 Nov 07, 2022
PyBrain - Another Python Machine Learning Library.

PyBrain -- the Python Machine Learning Library =============================================== INSTALLATION ------------ Quick answer: make sure you

2.8k Dec 31, 2022
An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results

EasyDatas An easy way to build PyTorch datasets. Modularly build datasets and automatically cache processed results Installation pip install git+https

Ximing Yang 4 Dec 14, 2021
Adversarial Texture Optimization from RGB-D Scans (CVPR 2020).

AdversarialTexture Adversarial Texture Optimization from RGB-D Scans (CVPR 2020). Scanning Data Download Please refer to data directory for details. B

Jingwei Huang 153 Nov 28, 2022
A Python type explainer!

typesplainer A Python typehint explainer! Available as a cli, as a website, as a vscode extension, as a vim extension Usage First, install the package

Typesplainer 79 Dec 01, 2022
[CVPR 2022] Thin-Plate Spline Motion Model for Image Animation.

[CVPR2022] Thin-Plate Spline Motion Model for Image Animation Source code of the CVPR'2022 paper "Thin-Plate Spline Motion Model for Image Animation"

yoyo-nb 1.4k Dec 30, 2022
Winners of DrivenData's Overhead Geopose Challenge

Winners of DrivenData's Overhead Geopose Challenge

DrivenData 22 Aug 04, 2022
Demystifying How Self-Supervised Features Improve Training from Noisy Labels

Demystifying How Self-Supervised Features Improve Training from Noisy Labels This code is a PyTorch implementation of the paper "[Demystifying How Sel

<a href=[email protected]"> 4 Oct 14, 2022
Algorithmic trading using machine learning.

Algorithmic Trading This machine learning algorithm was built using Python 3 and scikit-learn with a Decision Tree Classifier. The program gathers sto

Sourav Biswas 101 Nov 10, 2022
CellRank's reproducibility repository.

CellRank's reproducibility repository We believe that reproducibility is key and have made it as simple as possible to reproduce our results. Please e

Theis Lab 8 Oct 08, 2022
GANimation: Anatomically-aware Facial Animation from a Single Image (ECCV'18 Oral) [PyTorch]

GANimation: Anatomically-aware Facial Animation from a Single Image [Project] [Paper] Official implementation of GANimation. In this work we introduce

Albert Pumarola 1.8k Dec 28, 2022
Implementation of Nyström Self-attention, from the paper Nyströmformer

Nyström Attention Implementation of Nyström Self-attention, from the paper Nyströmformer. Yannic Kilcher video Install $ pip install nystrom-attention

Phil Wang 95 Jan 02, 2023