Joint-task Self-supervised Learning for Temporal Correspondence (NeurIPS 2019)

Related tags

Deep LearningUVC
Overview

Joint-task Self-supervised Learning for Temporal Correspondence

Project | Paper

Overview

Joint-task Self-supervised Learning for Temporal Correspondence

Xueting Li*, Sifei Liu*, Shalini De Mello, Xiaolong Wang, Jan Kautz, Ming-Hsuan Yang.

(* equal contributions)

In Neural Information Processing Systems (NeurIPS), 2019.

Citation

If you use our code in your research, please use the following BibTex:

@inproceedings{uvc_2019,
    Author = {Xueting Li and Sifei Liu and Shalini De Mello and Xiaolong Wang and Jan Kautz and Ming-Hsuan Yang},
    Title = {Joint-task Self-supervised Learning for Temporal Correspondence},
    Booktitle = {NeurIPS},
    Year = {2019},
}

Instance segmentation propagation on DAVIS2017

Method J_mean J_recall J_decay F_mean F_recall F_decay
Ours 0.563 0.650 0.289 0.592 0.641 0.354
Ours - track 0.577 0.683 0.263 0.613 0.698 0.324

Prerequisites

The code is tested in the following environment:

  • Ubuntu 16.04
  • Pytorch 1.1.0, tqdm, scipy 1.2.1

Testing on DAVIS2017

Testing without tracking

To test on DAVIS2017 for instance segmentation mask propagation, please run:

python test.py -d /workspace/DAVIS/ -s 480

Important parameters:

  • -c: checkpoint path.
  • -o: results path.
  • -d: DAVIS 2017 dataset path.
  • -s: test resolution, all results in the paper are tested on 480p images, i.e. -s 480.

Please check the test.py file for other parameters.

Testing with tracking

To test on DAVIS2017 by tracking & propagation, please run:

python test_with_track.py -d /workspace/DAVIS/ -s 480

Similar parameters as test.py, please see the test_with_track.py for details.

Testing on the VIP dataset

To test on VIP, please run the following command with your own VIP path:

python test_mask_vip.py -o results/VIP/category/ --scale_size 560 560 --pre_num 1 -d /DATA/VIP/VIP_Fine/Images/ --val_txt /DATA/VIP/VIP_Fine/lists/val_videos.txt -c weights/checkpoint_latest.pth.tar

and then:

python eval_vip.py -g DATA/VIP/VIP_Fine/Annotations/Category_ids/ -p results/VIP/category/

Testing on the JHMDB dataset

Please check out this branch. The code is borrowed from TimeCycle.

Training on Kinetics

Dataset

We use the kinetics dataset for training.

Training command

python track_match_v1.py --wepoch 10 --nepoch 30 -c match_track_switch --batchsize 40 --coord_switch 0 --lc 0.3

Acknowledgements

Owner
Sifei Liu
Sifei Liu
Machine Learning in Asset Management (by @firmai)

Machine Learning in Asset Management If you like this type of content then visit ML Quant site below: https://www.ml-quant.com/ Part One Follow this l

Derek Snow 1.5k Jan 02, 2023
Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation

Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation Introduction WAKD is a PyTorch implementation for our ICPR-2022 pap

2 Oct 20, 2022
Multi-Template Mouse Brain MRI Atlas (MBMA): both in-vivo and ex-vivo

Multi-template MRI mouse brain atlas (both in vivo and ex vivo) Mouse Brain MRI atlas (both in-vivo and ex-vivo) (repository relocated from the origin

8 Nov 18, 2022
Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images

Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images [ICCV 2021] © Mahmood Lab - This code is made avail

Mahmood Lab @ Harvard/BWH 63 Dec 01, 2022
FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation

FCN_via_Keras FCN FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This

Kento Watanabe 48 Aug 30, 2022
Tianshou - An elegant PyTorch deep reinforcement learning library.

Tianshou (天授) is a reinforcement learning platform based on pure PyTorch. Unlike existing reinforcement learning libraries, which are mainly based on

Tsinghua Machine Learning Group 5.5k Jan 05, 2023
[ICCV2021] IICNet: A Generic Framework for Reversible Image Conversion

IICNet - Invertible Image Conversion Net Official PyTorch Implementation for IICNet: A Generic Framework for Reversible Image Conversion (ICCV2021). D

felixcheng97 55 Dec 06, 2022
pytorch implementation of dftd2 & dftd3

torch-dftd pytorch implementation of dftd2 [1] & dftd3 [2, 3] Install # Install from pypi pip install torch-dftd # Install from source (for developer

33 Nov 28, 2022
ICCV2021 - A New Journey from SDRTV to HDRTV.

ICCV2021 - A New Journey from SDRTV to HDRTV.

XyChen 82 Dec 27, 2022
[CVPRW 2022] Attentions Help CNNs See Better: Attention-based Hybrid Image Quality Assessment Network

Attention Helps CNN See Better: Hybrid Image Quality Assessment Network [CVPRW 2022] Code for Hybrid Image Quality Assessment Network [paper] [code] T

IIGROUP 49 Dec 11, 2022
Multi-Scale Progressive Fusion Network for Single Image Deraining

Multi-Scale Progressive Fusion Network for Single Image Deraining (MSPFN) This is an implementation of the MSPFN model proposed in the paper (Multi-Sc

Kuijiang 128 Nov 21, 2022
Differentiable architecture search for convolutional and recurrent networks

Differentiable Architecture Search Code accompanying the paper DARTS: Differentiable Architecture Search Hanxiao Liu, Karen Simonyan, Yiming Yang. arX

Hanxiao Liu 3.7k Jan 09, 2023
Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Pynomial - a lightweight python library for implementing the many confidence intervals for the risk parameter of a binomial model

Demetri Pananos 9 Oct 04, 2022
Official Implementation of SWAD (NeurIPS 2021)

SWAD: Domain Generalization by Seeking Flat Minima (NeurIPS'21) Official PyTorch implementation of SWAD: Domain Generalization by Seeking Flat Minima.

Junbum Cha 97 Dec 20, 2022
This project provides an unsupervised framework for mining and tagging quality phrases on text corpora with pretrained language models (KDD'21).

UCPhrase: Unsupervised Context-aware Quality Phrase Tagging To appear on KDD'21...[pdf] This project provides an unsupervised framework for mining and

Xiaotao Gu 146 Dec 22, 2022
Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression"

beyond-preserved-accuracy Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression" How to implemen

Kevin Canwen Xu 10 Dec 23, 2022
Credo AI Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data assessment, and acts as a central gateway to assessments created in the open source community.

Lens by Credo AI - Responsible AI Assessment Framework Lens is a comprehensive assessment framework for AI systems. Lens standardizes model and data a

Credo AI 27 Dec 14, 2022
[ICCV 2021 Oral] Mining Latent Classes for Few-shot Segmentation

Mining Latent Classes for Few-shot Segmentation Lihe Yang, Wei Zhuo, Lei Qi, Yinghuan Shi, Yang Gao. This codebase contains baseline of our paper Mini

Lihe Yang 66 Nov 29, 2022
Easily benchmark PyTorch model FLOPs, latency, throughput, max allocated memory and energy consumption

⏱ pytorch-benchmark Easily benchmark model inference FLOPs, latency, throughput, max allocated memory and energy consumption Install pip install pytor

Lukas Hedegaard 21 Dec 22, 2022