Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Overview

MViTs Excel at Class-agnostic Object Detection

PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC PWC

Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Muhammad Maaz, Hanoona Rasheed, Salman Khan, Fahad Shahbaz Khan, Rao Muhammad Anwer and Ming-Hsuan Yang

Paper: https://arxiv.org/abs/2111.11430


main figure

Abstract: What constitutes an object? This has been a long-standing question in computer vision. Towards this goal, numerous learning-free and learning-based approaches have been developed to score objectness. However, they generally do not scale well across new domains and for unseen objects. In this paper, we advocate that existing methods lack a top-down supervision signal governed by human-understandable semantics. To bridge this gap, we explore recent Multi-modal Vision Transformers (MViT) that have been trained with aligned image-text pairs. Our extensive experiments across various domains and novel objects show the state-of-the-art performance of MViTs to localize generic objects in images. Based on these findings, we develop an efficient and flexible MViT architecture using multi-scale feature processing and deformable self-attention that can adaptively generate proposals given a specific language query. We show the significance of MViT proposals in a diverse range of applications including open-world object detection, salient and camouflage object detection, supervised and self-supervised detection tasks. Further, MViTs offer enhanced interactability with intelligible text queries.


Architecture overview of MViTs used in this work

Architecture overview


Results


Class-agnostic OD performance of MViTs in comparison with uni-modal detector (RetinaNet) on several datasets. MViTs show consistently good results on all datasets.

Results


Enhanced Interactability: Effect of using different intuitive text queries on the MDef-DETR class-agnostic OD performance. Combining detections from multiple queries captures varying aspects of objectness.

Results


Generalization to Rare/Novel Classes: MDef-DETR class-agnostic OD performance on rarely and frequently occurring categories in the pretraining captions. The numbers on top of the bars indicate occurrences of the corresponding category in the training dataset. The MViT achieves good recall values even for the classes with no or very few occurrences.

Results


Open-world Object Detection: Effect of using class-agnostic OD proposals from MDef-DETR for pseudo labelling of unknowns in Open World Detector (ORE).

Results


Pretraining for Class-aware Object Detection: Effect of using MDef-DETR proposals for pre-training of DETReg instead of Selective Search proposals.

Results


Evaluation

The provided codebase contains the pre-computed detections for all datasets using ours MDef-DETR model. The provided directory structure is as follows,

-> README.md
-> LICENSE
-> get_eval_metrics.py
-> get_multi_dataset_eval_metrics.py
-> data
    -> voc2007
        -> combined.pkl
    -> coco
        -> combined.pkl
    -> kitti
        -> combined.pkl
    -> kitchen
        -> combined.pkl
    -> cliaprt
        -> combined.pkl
    -> comic
        -> combined.pkl
    -> watercolor
        -> combined.pkl
    -> dota
        -> combined.pkl

Where combined.pkl contains the combined detections from multiple intutive text queries for corresponding datasets. (Refer Section 5.1: Enhanced Interactability for more details)

Download the annotations for all datasets and arrange them as shown below. Note that the script expect COCO annotations in standard COCO format & annotations of all other datasets in VOC format.

...
...
-> data
    -> voc2007
        -> combined.pkl
        -> Annotations
    -> coco
        -> combined.pkl
        -> instances_val2017_filt.json
    -> kitti
        -> combined.pkl
        -> Annotations
        ...
    -> kitchen
        -> combined.pkl
        -> Annotations
    -> cliaprt
        -> combined.pkl
        -> Annotations
    -> comic
        -> combined.pkl
        -> Annotations
    -> watercolor
        -> combined.pkl
        -> Annotations
    -> dota
        -> combined.pkl
        -> Annotations

Once the above mentioned directory structure is created, follow the following steps to calculate the metrics.

  1. Install numpy
$ pip install numpy
  1. Calculate metrics
$ python get_multi_dataset_eval_metrics.py

The calculated metrics will be stored in a data.csv file in the same directory.


Citation

If you use our work, please consider citing:

@article{Maaz2021Multimodal,
    title={Multi-modal Transformers Excel at Class-agnostic Object Detection},
    author={Muhammad Maaz and Hanoona Rasheed and Salman Khan and Fahad Shahbaz Khan and Rao Muhammad Anwer and Ming-Hsuan Yang},
    journal={ArXiv 2111.11430},
    year={2021}
}

Contact

Should you have any question, please contact [email protected] or [email protected]

🚀 Note: The repository contains the minimum evaluation code. The complete training and inference scripts along with pretrained models will be released soon. Stay Tuned!

Comments
  • aligning image text pairs

    aligning image text pairs

    I have a question on the paper: you train on aligned image-text pairs. How do you create this alignment? is it the same way as in MDeTr? I did not fully understand from the paper, especially for non-natural images like satellite images or medical images.

    opened by nikky4D 6
  • Loading checkpoints for inference

    Loading checkpoints for inference

    Which checkpoints in drive link you provided will load correctly in default MDefDETR model without any errors? Im getting missing/unexpected keys errors.

    documentation 
    opened by KaleemW 4
  • Is EMA used in this work?

    Is EMA used in this work?

    Hello author, thanks for your great work. I raise a question about the usage of Exponential Moving Average (EMA) in this paper, hoping you can provide me with some clues. It seems that this paper does not detail in this part. As far as I know, MDETR uses it and evaluate use the EMA model. So I wonder is it used in this work? If it is actually used, why should we evaluate by the EMA model rather than the original one?

    opened by JacobYuan7 4
  • one of the variables needed for gradient computation has been modified by an inplace operation

    one of the variables needed for gradient computation has been modified by an inplace operation

    RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.LongTensor [2, 20]] is at version 3; expected version 2 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).

    This error will terminate the training procedure when training mdef_detr using the PyTorch environment as you advise(torch==1.8.0+cu111).

    And I found the variables of 'transformer.text_encoder.pooler.dense.weight' does not have grad. This may be the main reason for this error.

    opened by xushilin1 2
  • Loading the Faster RCNN checkpoint

    Loading the Faster RCNN checkpoint

    Greetings

    The readme states: (Feb 01, 2022) Training codes for MDef-DETR and MDef-DETR minus Language models are released -> training/README.md Instructions to use class-agnostic object detection behavior of MDef-DETR on different applications are released -> applications/README.md All the pretrained models (MDef-DETR, Def-DETR, MDETR, DETReg, Faster-RCNN, RetinaNet, ORE, and others), along with the instructions to reproduce the results are released -> this link

    Following the link to the google drive, only provides me with the model weight for the Faster-RCNN, but not with instructions on how to load it and which framework to use. I have tried creating a Faster-RCNN-resnet101 model with pytorch, but when I load the model weight, it states that the layer names does not match. Any guidance would be much appreciated.

    Best regards Martin

    uni-modal-detectors 
    opened by MartinPedersenpp 2
  • Need to understand how to import weights

    Need to understand how to import weights

    Hello,

    Firstly, I'd like to congratulate you for bringing this amazing work. Class agnostic object detection is much needed currently in the industry and this would be a great way to solve the problem.

    I wanted to test your model on some custom data. However, I cannot import pre-trained weights from the link you have provided. I can see the zip file but I couldn't find a way to import them. I'm using OpenCV to import weights. It is asking me to have a config file as well as .weights file.

    Could you please help me which library to use to import weights when I'm working on a jupyter notebook?

    Thank you,

    opened by abhi-vellala 2
  • pretrain data download

    pretrain data download

    if is it possible to split pretrain data into multiple seperate zip files。 I download data from google drive : https://drive.google.com/drive/folders/1-3kAsyZIVFbNelRXrF93Y5tMgOypv2jV i cannot download this data because of google drive time limit(less than 1 hours) and my limit network bandwidth。

    documentation 
    opened by zhouxingguang 1
  • Training code release

    Training code release

    This pull request adds

    • Training codes for MDef-DETR and MDef-DETR minus Language models
    • Instructions to use class-agnostic object detection behavior of MDef-DETR on different applications
    • All the pre-trained models (MDef-DETR, Def-DETR, MDETR, DETReg, Faster-RCNN, RetinaNet, ORE, and others), along with the instructions to reproduce the results
    opened by mmaaz60 0
  • Questions about your training procedure?

    Questions about your training procedure?

    To my understanding, I think you use image-text pairs as inputs and only bbox annotations as supervision signals without any class labels, does it right?

    opened by GYslchen 1
  • Questions about your pretrained model

    Questions about your pretrained model

    Does the pre-trained model you provide cover the categories on LVIS data? If I want to do open-world object detection on the LVIS dataset, can I directly use your pre-trained model to generate the proposals or should I need to filter the dataset so that it doesn't contain any object in the LVIS dataset?

    opened by chengsilin 1
  • how to generate 'tokens_positive'  ann from detector dataset like object365?

    how to generate 'tokens_positive' ann from detector dataset like object365?

    I found 'tokens_positive' was used in your ann file. could you please release the code of how to process detect data like coco to get the 'tokens_positive' ann results?

    documentation 
    opened by zhouxingguang 1
Releases(v1.0)
  • v1.0(Feb 1, 2022)

    • Training codes for MDef-DETR and MDef-DETR minus Language models are released -> training/README.md
    • Instructions to use class-agnostic object detection behavior of MDef-DETR on different applications are released -> applications/README.md
    • All the pretrained models (MDef-DETR, Def-DETR, MDETR, DETReg, Faster-RCNN, RetinaNet, ORE, and others), along with the instructions to reproduce the results are released -> this link
    Source code(tar.gz)
    Source code(zip)
  • v0.1(Nov 25, 2021)

    Evaluation Code & Pre-trained Models

    • Releases evaluation code for MDef-DETR and 'MDef-DETR w/o Language Branch' model
    • Releases the pre-trained weights for both models
    • Releases the pre-computed predictions for both the models
    Source code(tar.gz)
    Source code(zip)
Owner
Muhammad Maaz
An Electrical Engineer with experience in Computer Vision software development. Skilled in Machine Learning, Deep Learning and Computer Vision.
Muhammad Maaz
The official implementation of the research paper "DAG Amendment for Inverse Control of Parametric Shapes"

DAG Amendment for Inverse Control of Parametric Shapes This repository is the official Blender implementation of the paper "DAG Amendment for Inverse

Elie Michel 157 Dec 26, 2022
Code for the paper "M2m: Imbalanced Classification via Major-to-minor Translation" (CVPR 2020)

M2m: Imbalanced Classification via Major-to-minor Translation This repository contains code for the paper "M2m: Imbalanced Classification via Major-to

79 Oct 13, 2022
Python/Rust implementations and notes from Proofs Arguments and Zero Knowledge

What is this? This is where I'll be collecting resources related to the Study Group on Dr. Justin Thaler's Proofs Arguments And Zero Knowledge Book. T

Thor 66 Jan 04, 2023
This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

Nils L. Westhausen 182 Jan 07, 2023
Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays In this repo, you will find the instructions on how to requ

Intelligent Vision Research Lab 4 Jul 21, 2022
Model Quantization Benchmark

Introduction MQBench is an open-source model quantization toolkit based on PyTorch fx. The envision of MQBench is to provide: SOTA Algorithms. With MQ

500 Jan 06, 2023
Gradient Inversion with Generative Image Prior

Gradient Inversion with Generative Image Prior This repository is an implementation of "Gradient Inversion with Generative Image Prior", accepted to N

MLLab @ Postech 25 Jan 09, 2023
Code for the paper "Learning-Augmented Algorithms for Online Steiner Tree"

Learning-Augmented Algorithms for Online Steiner Tree This is the code for the paper "Learning-Augmented Algorithms for Online Steiner Tree". Requirem

0 Dec 09, 2021
Scrutinizing XAI with linear ground-truth data

This repository contains all the experiments presented in the corresponding paper: "Scrutinizing XAI using linear ground-truth data with suppressor va

braindata lab 2 Oct 04, 2022
Lbl2Vec learns jointly embedded label, document and word vectors to retrieve documents with predefined topics from an unlabeled document corpus.

Lbl2Vec Lbl2Vec is an algorithm for unsupervised document classification and unsupervised document retrieval. It automatically generates jointly embed

sebis - TUM - Germany 61 Dec 20, 2022
OpenMMLab Image Classification Toolbox and Benchmark

Introduction English | 简体中文 MMClassification is an open source image classification toolbox based on PyTorch. It is a part of the OpenMMLab project. D

OpenMMLab 1.8k Jan 03, 2023
Can we visualize a large scientific data set with a surrogate model? We're building a GAN for the Earth's Mantle Convection data set to see if we can!

EarthGAN - Earth Mantle Surrogate Modeling Can a surrogate model of the Earth’s Mantle Convection data set be built such that it can be readily run in

Tim 0 Dec 09, 2021
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Ren Yurui 261 Jan 09, 2023
The official PyTorch code for NeurIPS 2021 ML4AD Paper, "Does Thermal data make the detection systems more reliable?"

MultiModal-Collaborative (MMC) Learning Framework for integrating RGB and Thermal spectral modalities This is the official code for NeurIPS 2021 Machi

NeurAI 12 Nov 02, 2022
Rethinking Portrait Matting with Privacy Preserving

Rethinking Portrait Matting with Privacy Preserving This is the official repository of the paper Rethinking Portrait Matting with Privacy Preserving.

184 Jan 03, 2023
An elaborate and exhaustive paper list for Named Entity Recognition (NER)

Named-Entity-Recognition-NER-Papers by Pengfei Liu, Jinlan Fu and other contributors. An elaborate and exhaustive paper list for Named Entity Recognit

Pengfei Liu 388 Dec 18, 2022
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica

Maximilian Stadler 30 Dec 05, 2022
PyTorch implementation of "Efficient Neural Architecture Search via Parameters Sharing"

Efficient Neural Architecture Search (ENAS) in PyTorch PyTorch implementation of Efficient Neural Architecture Search via Parameters Sharing. ENAS red

Taehoon Kim 2.6k Dec 31, 2022
Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022
Code accompanying the NeurIPS 2021 paper "Generating High-Quality Explanations for Navigation in Partially-Revealed Environments"

Generating High-Quality Explanations for Navigation in Partially-Revealed Environments This work presents an approach to explainable navigation under

RAIL Group @ George Mason University 1 Oct 28, 2022