HyDiff: Hybrid Differential Software Analysis

Related tags

Deep Learninghydiff
Overview

DOI

HyDiff: Hybrid Differential Software Analysis

This repository provides the tool and the evaluation subjects for the paper HyDiff: Hybrid Differential Software Analysis accepted for the technical track at ICSE'2020. A pre-print of the paper is available here.

Authors: Yannic Noller, Corina S. Pasareanu, Marcel Böhme, Youcheng Sun, Hoang Lam Nguyen, and Lars Grunske.

The repository includes:

A pre-built version of HyDiff is also available as Docker image:

docker pull yannicnoller/hydiff
docker run -it --rm yannicnoller/hydiff

Tool

HyDiff's technical framework is built on top of Badger, DifFuzz, and the Symbolic PathFinder. We provide a complete snapshot of all tools and our extensions.

Requirements

  • Git, Ant, Build-Essentials, Gradle
  • Java JDK = 1.8
  • Python3, Numpy Package
  • recommended: Ubuntu 18.04.1 LTS

Folder Structure

The folder tool contains 2 subfolders: fuzzing and symbolicexecution, representing the both components of HyDiff.

fuzzing

  • afl-differential: The fuzzing component is built on top of DifFuzz and KelinciWCA (the fuzzing part of Badger). Both use AFL as the underlying fuzzing engine. In order to make it easy for the users, we provide our complete modified AFL variant in this folder. Our modifications are based on afl-2.52b.

  • kelinci-differential: Kelinci leverages a server-client architecture to make AFL applicable to Java applications, please refer to the Kelinci poster-paper for more details. We modified it to make usable in a general differential analysis. It includes an interface program to connect the Kelinci server to the AFL fuzzer and the instrumentor project, which is used to instrument the Java bytecode. The instrumentation handles the coverage reporting and the collection of our differential metrics. The Kelinci server handles requests from AFL to execute a mutated input on the application.

symbolicexecution

  • jpf-core: Our symbolic execution is built on top of Symbolic PathFinder (SPF), which is an extension of Java PathFinder (JPF), which makes it necessary to include the core implementation of JPF.

  • jpf-symbc-differential: In order to make SPF applicable to a differential analysis, we modified in several locations and added the ability to perform some sort of shadow symbolic execution (cf. Complete Shadow Symbolic Execution with Java PathFinder). This folder includes the modified SPF project.

  • badger-differential: HyDiff performs a hybrid analysis by running fuzzing and symbolic execution in parallel. This concept is based on Badger, which provides the technical basis for our implementation. This folder includes the modified Badger project, which enables the differential hybrid analysis, incl. the differential dynamic symbolic execution.

How to install the tool and run our evaluation

Be aware that the instructions have been tested for Unix systems only.

  1. First you need to build the tool and the subjects. We provide a script setup.sh to simply build everything. Note: the script may override an existing site.properties file, which is required for JPF/SPF.

  2. Test the installation: the best way to test the installation is to execute the evaluation of our example program (cf. Listing 1 in our paper). You can execute the script run_example.sh. As it is, it will run each analysis (just differential fuzzing, just differential symbolic execution, and the hybrid analysis) once. The values presented in our paper in Section 2.2 are averaged over 30 runs. In order to perform 30 runs each, you can easily adapt the script, but for some first test runs you can leave it as it is. The script should produce three folders:

    • experiments/subjects/example/fuzzer-out-1: results for differential fuzzing
    • experiments/subjects/example/symexe-out-1: results for differential symbolic execution
    • experiments/subjects/example/hydiff-out-1: results for HyDiff (hybrid combination) It will also produce three csv files with the summarized statistics for each experiment:
    • experiments/subjects/example/fuzzer-out-results-n=1-t=600-s=30.csv
    • experiments/subjects/example/symexe-out-results-n=1-t=600-s=30.csv
    • experiments/subjects/example/hydiff-out-results-n=1-t=600-s=30-d=0.csv
  3. After finishing the building process and testing the installation, you can use the provided run scripts (experiments/scripts) to replay HyDiff's evaluation or to perform your own differential analysis. HyDiff's evaluation contains three types of differential analysis. For each of them you will find a separate run script:

In the beginning of each run script you can define the experiment parameters:

  • number_of_runs: N, the number of evaluation runs for each subject (30 for all experiments)
  • time_bound: T, the time bound for the analysis (regression: 600sec, side-channel: 1800sec, and dnn: 3600sec)
  • step_size_eval: S, the step size for the evaluation (30sec for all experiments)
  • [time_symexe_first: D, the delay with which fuzzing gets started after symexe for the DNN subjects] (only DNN)

Each run script first executes differential fuzzing, then differential symbolic execution and then the hybrid analysis. Please adapt our scripts to perform your own analysis.

For each subject, analysis_type, and experiment repetition i the scripts will produce folders like: experiments/subjects/ / -out- , and will summarize the experiments in csv files like: experiments/subjects/ / -out-results-n= -t= -s= -d= .csv .

Complete Evaluation Reproduction

In order to reproduce our evaluation completely, you need to run the three mentioned run scripts. They include the generation of all statistics. Be aware that the mere runtime of all analysis parts is more than 53 days because of the high runtimes and number of repetitions. So it might be worthwhile to run it only for some specific subjects or to run the analysis on different machines in parallel or to modify the runtime or to reduce the number of repetitions. Feel free to adjust the script or reuse it for your own purpose.

Statistics

As mentioned earlier, the statistics will be automatically generated by our run script, which execute the python scripts from the scripts folder to aggregate the several experiment runs. They will generate csv files with the information about the average result values.

For the regression analysis and the DNN analysis we use the scripts:

For the side-channel analysis we use the scripts:

All csv files for our experiments are included in experiments/results.

Feel free to adapt these evaluation scripts for your own purpose.

Maintainers

  • Yannic Noller (yannic.noller at acm.org)

License

This project is licensed under the MIT License - see the LICENSE file for details

You might also like...
Python framework for Stochastic Differential Equations modeling

SDElearn: a Python package for SDE modeling This package implements functionalities for working with Stochastic Differential Equations models (SDEs fo

Differential rendering based motion capture blender project.
Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search
BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search

BossNAS This repository contains PyTorch evaluation code, retraining code and pretrained models of our paper: BossNAS: Exploring Hybrid CNN-transforme

Hybrid Neural Fusion for Full-frame Video Stabilization

FuSta: Hybrid Neural Fusion for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations
Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations

Implementation for Iso-Points (CVPR 2021) Official code for paper Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations paper |

The official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averaging Approach

Graph Optimizer This repo contains the official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averagin

A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie_recs Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Coll

:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network
Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

DeepCDR Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network This work has been accepted to ECCB2020 and was also published in the

Releases(v1.0.0)
  • v1.0.0(Jan 26, 2020)

    First official release for HyDiff. We added all parts of our tool and all evaluation subjects to support the reproduction of our results. This release is submitted to the ICSE 2020 Artifact Evaluation.

    Source code(tar.gz)
    Source code(zip)
Owner
Yannic Noller
Yannic Noller
PyTorchMemTracer - Depict GPU memory footprint during DNN training of PyTorch

A Memory Tracer For PyTorch OOM is a nightmare for PyTorch users. However, most

Jiarui Fang 9 Nov 14, 2022
Solutions and questions for AoC2021. Merry christmas!

Advent of Code 2021 Merry christmas! 🎄 🎅 To get solutions and approximate execution times for implementations, please execute the run.py script in t

Wilhelm Ågren 5 Dec 29, 2022
The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dealing with medical images.

The Medical Detection Toolkit contains 2D + 3D implementations of prevalent object detectors such as Mask R-CNN, Retina Net, Retina U-Net, as well as a training and inference framework focused on dea

MIC-DKFZ 1.2k Jan 04, 2023
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization

Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization Official PyTorch implementation for our URST (Ultra-Resolution Sty

czczup 148 Dec 27, 2022
Vector Quantized Diffusion Model for Text-to-Image Synthesis

Vector Quantized Diffusion Model for Text-to-Image Synthesis Due to company policy, I have to set microsoft/VQ-Diffusion to private for now, so I prov

Shuyang Gu 294 Jan 05, 2023
This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust.

Demo BERT ONNX pipeline written in rust This demo showcase the use of onnxruntime-rs with a GPU on CUDA 11 to run Bert in a data pipeline with Rust. R

Xavier Tao 14 Dec 17, 2022
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
Toolbox of models, callbacks, and datasets for AI/ML researchers.

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch Website • Installation • Main

Pytorch Lightning 1.4k Dec 30, 2022
CTC segmentation python package

CTC segmentation CTC segmentation can be used to find utterances alignments within large audio files. This repository contains the ctc-segmentation py

Ludwig Kürzinger 217 Jan 04, 2023
Speech Recognition using DeepSpeech2.

deepspeech.pytorch Implementation of DeepSpeech2 for PyTorch using PyTorch Lightning. The repo supports training/testing and inference using the DeepS

Sean Naren 2k Jan 04, 2023
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in

TU Delft 43 Dec 07, 2022
Original Implementation of Prompt Tuning from Lester, et al, 2021

Prompt Tuning This is the code to reproduce the experiments from the EMNLP 2021 paper "The Power of Scale for Parameter-Efficient Prompt Tuning" (Lest

Google Research 282 Dec 28, 2022
MLJetReconstruction - using machine learning to reconstruct jets for CMS

MLJetReconstruction - using machine learning to reconstruct jets for CMS The C++ data extraction code used here was based heavily on that foundv here.

ALPhA Davidson 0 Nov 17, 2021
Motion Reconstruction Code and Data for Skills from Videos (SFV)

Motion Reconstruction Code and Data for Skills from Videos (SFV) This repo contains the data and the code for motion reconstruction component of the S

268 Dec 01, 2022
SpanNER: Named EntityRe-/Recognition as Span Prediction

SpanNER: Named EntityRe-/Recognition as Span Prediction Overview | Demo | Installation | Preprocessing | Prepare Models | Running | System Combination

NeuLab 104 Dec 17, 2022
基于Paddle框架的arcface复现

arcface-Paddle 基于Paddle框架的arcface复现 ArcFace-Paddle 本项目基于paddlepaddle框架复现ArcFace,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: InsightFace Padd

QuanHao Guo 16 Dec 15, 2022
Pytorch Implementation of Various Point Transformers

Pytorch Implementation of Various Point Transformers Recently, various methods applied transformers to point clouds: PCT: Point Cloud Transformer (Men

Neil You 434 Dec 30, 2022
RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020)

RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020) Hong Wang, Qi Xie, Qian Zhao, and Deyu Meng [PDF] [Supplementary M

Hong Wang 6 Sep 27, 2022
Image Restoration Using Swin Transformer for VapourSynth

SwinIR SwinIR function for VapourSynth, based on https://github.com/JingyunLiang/SwinIR. Dependencies NumPy PyTorch, preferably with CUDA. Note that t

Holy Wu 11 Jun 19, 2022
Building a real-time environment using webcam frame division in OpenCV and classify cropped images using a fine-tuned vision transformers on hybryd datasets samples for facial emotion recognition.

Visual Transformer for Facial Emotion Recognition (FER) This project has the aim to build an efficient Visual Transformer for the Facial Emotion Recog

Mario Sessa 8 Dec 12, 2022