HyDiff: Hybrid Differential Software Analysis

Related tags

Deep Learninghydiff
Overview

DOI

HyDiff: Hybrid Differential Software Analysis

This repository provides the tool and the evaluation subjects for the paper HyDiff: Hybrid Differential Software Analysis accepted for the technical track at ICSE'2020. A pre-print of the paper is available here.

Authors: Yannic Noller, Corina S. Pasareanu, Marcel Böhme, Youcheng Sun, Hoang Lam Nguyen, and Lars Grunske.

The repository includes:

A pre-built version of HyDiff is also available as Docker image:

docker pull yannicnoller/hydiff
docker run -it --rm yannicnoller/hydiff

Tool

HyDiff's technical framework is built on top of Badger, DifFuzz, and the Symbolic PathFinder. We provide a complete snapshot of all tools and our extensions.

Requirements

  • Git, Ant, Build-Essentials, Gradle
  • Java JDK = 1.8
  • Python3, Numpy Package
  • recommended: Ubuntu 18.04.1 LTS

Folder Structure

The folder tool contains 2 subfolders: fuzzing and symbolicexecution, representing the both components of HyDiff.

fuzzing

  • afl-differential: The fuzzing component is built on top of DifFuzz and KelinciWCA (the fuzzing part of Badger). Both use AFL as the underlying fuzzing engine. In order to make it easy for the users, we provide our complete modified AFL variant in this folder. Our modifications are based on afl-2.52b.

  • kelinci-differential: Kelinci leverages a server-client architecture to make AFL applicable to Java applications, please refer to the Kelinci poster-paper for more details. We modified it to make usable in a general differential analysis. It includes an interface program to connect the Kelinci server to the AFL fuzzer and the instrumentor project, which is used to instrument the Java bytecode. The instrumentation handles the coverage reporting and the collection of our differential metrics. The Kelinci server handles requests from AFL to execute a mutated input on the application.

symbolicexecution

  • jpf-core: Our symbolic execution is built on top of Symbolic PathFinder (SPF), which is an extension of Java PathFinder (JPF), which makes it necessary to include the core implementation of JPF.

  • jpf-symbc-differential: In order to make SPF applicable to a differential analysis, we modified in several locations and added the ability to perform some sort of shadow symbolic execution (cf. Complete Shadow Symbolic Execution with Java PathFinder). This folder includes the modified SPF project.

  • badger-differential: HyDiff performs a hybrid analysis by running fuzzing and symbolic execution in parallel. This concept is based on Badger, which provides the technical basis for our implementation. This folder includes the modified Badger project, which enables the differential hybrid analysis, incl. the differential dynamic symbolic execution.

How to install the tool and run our evaluation

Be aware that the instructions have been tested for Unix systems only.

  1. First you need to build the tool and the subjects. We provide a script setup.sh to simply build everything. Note: the script may override an existing site.properties file, which is required for JPF/SPF.

  2. Test the installation: the best way to test the installation is to execute the evaluation of our example program (cf. Listing 1 in our paper). You can execute the script run_example.sh. As it is, it will run each analysis (just differential fuzzing, just differential symbolic execution, and the hybrid analysis) once. The values presented in our paper in Section 2.2 are averaged over 30 runs. In order to perform 30 runs each, you can easily adapt the script, but for some first test runs you can leave it as it is. The script should produce three folders:

    • experiments/subjects/example/fuzzer-out-1: results for differential fuzzing
    • experiments/subjects/example/symexe-out-1: results for differential symbolic execution
    • experiments/subjects/example/hydiff-out-1: results for HyDiff (hybrid combination) It will also produce three csv files with the summarized statistics for each experiment:
    • experiments/subjects/example/fuzzer-out-results-n=1-t=600-s=30.csv
    • experiments/subjects/example/symexe-out-results-n=1-t=600-s=30.csv
    • experiments/subjects/example/hydiff-out-results-n=1-t=600-s=30-d=0.csv
  3. After finishing the building process and testing the installation, you can use the provided run scripts (experiments/scripts) to replay HyDiff's evaluation or to perform your own differential analysis. HyDiff's evaluation contains three types of differential analysis. For each of them you will find a separate run script:

In the beginning of each run script you can define the experiment parameters:

  • number_of_runs: N, the number of evaluation runs for each subject (30 for all experiments)
  • time_bound: T, the time bound for the analysis (regression: 600sec, side-channel: 1800sec, and dnn: 3600sec)
  • step_size_eval: S, the step size for the evaluation (30sec for all experiments)
  • [time_symexe_first: D, the delay with which fuzzing gets started after symexe for the DNN subjects] (only DNN)

Each run script first executes differential fuzzing, then differential symbolic execution and then the hybrid analysis. Please adapt our scripts to perform your own analysis.

For each subject, analysis_type, and experiment repetition i the scripts will produce folders like: experiments/subjects/ / -out- , and will summarize the experiments in csv files like: experiments/subjects/ / -out-results-n= -t= -s= -d= .csv .

Complete Evaluation Reproduction

In order to reproduce our evaluation completely, you need to run the three mentioned run scripts. They include the generation of all statistics. Be aware that the mere runtime of all analysis parts is more than 53 days because of the high runtimes and number of repetitions. So it might be worthwhile to run it only for some specific subjects or to run the analysis on different machines in parallel or to modify the runtime or to reduce the number of repetitions. Feel free to adjust the script or reuse it for your own purpose.

Statistics

As mentioned earlier, the statistics will be automatically generated by our run script, which execute the python scripts from the scripts folder to aggregate the several experiment runs. They will generate csv files with the information about the average result values.

For the regression analysis and the DNN analysis we use the scripts:

For the side-channel analysis we use the scripts:

All csv files for our experiments are included in experiments/results.

Feel free to adapt these evaluation scripts for your own purpose.

Maintainers

  • Yannic Noller (yannic.noller at acm.org)

License

This project is licensed under the MIT License - see the LICENSE file for details

You might also like...
Python framework for Stochastic Differential Equations modeling

SDElearn: a Python package for SDE modeling This package implements functionalities for working with Stochastic Differential Equations models (SDEs fo

Differential rendering based motion capture blender project.
Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search
BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search

BossNAS This repository contains PyTorch evaluation code, retraining code and pretrained models of our paper: BossNAS: Exploring Hybrid CNN-transforme

Hybrid Neural Fusion for Full-frame Video Stabilization

FuSta: Hybrid Neural Fusion for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations
Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations

Implementation for Iso-Points (CVPR 2021) Official code for paper Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations paper |

The official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averaging Approach

Graph Optimizer This repo contains the official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averagin

A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie_recs Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Coll

:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network
Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

DeepCDR Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network This work has been accepted to ECCB2020 and was also published in the

Releases(v1.0.0)
  • v1.0.0(Jan 26, 2020)

    First official release for HyDiff. We added all parts of our tool and all evaluation subjects to support the reproduction of our results. This release is submitted to the ICSE 2020 Artifact Evaluation.

    Source code(tar.gz)
    Source code(zip)
Owner
Yannic Noller
Yannic Noller
Server files for UltimateLabeling

UltimateLabeling server files Server files for UltimateLabeling. git clone https://github.com/alexandre01/UltimateLabeling_server.git cd UltimateLabel

Alexandre Carlier 4 Oct 10, 2022
Dynamical movement primitives (DMPs), probabilistic movement primitives (ProMPs), spatially coupled bimanual DMPs.

Movement Primitives Movement primitives are a common group of policy representations in robotics. There are many different types and variations. This

DFKI Robotics Innovation Center 63 Jan 06, 2023
Fusion-in-Decoder Distilling Knowledge from Reader to Retriever for Question Answering

This repository contains code for: Fusion-in-Decoder models Distilling Knowledge from Reader to Retriever Dependencies Python 3 PyTorch (currently tes

Meta Research 323 Dec 19, 2022
Replication package for the manuscript "Using Personality Detection Tools for Software Engineering Research: How Far Can We Go?" submitted to TOSEM

tosem2021-personality-rep-package Replication package for the manuscript "Using Personality Detection Tools for Software Engineering Research: How Far

Collaborative Development Group 1 Dec 13, 2021
Film review classification

Film review classification Решение задачи классификации отзывов на фильмы на положительные и отрицательные с помощью рекуррентных нейронных сетей 1. З

Nikita Dukin 3 Jan 21, 2022
Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022)

Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022) Junjie Ye, Changhong Fu, Guangze Zheng, Danda Pani Paudel, and Guang Chen. Uns

Intelligent Vision for Robotics in Complex Environment 91 Dec 30, 2022
4th place solution to datafactory challenge by Intermarché.

Solution to Datafactory challenge by Intermarché. 4th place solution to datafactory challenge by Intermarché. The objective of the challenge is to pre

Raphael Sourty 11 Mar 19, 2022
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022
This is a simple backtesting framework to help you test your crypto currency trading. It includes a way to download and store historical crypto data and to execute a trading strategy.

You can use this simple crypto backtesting script to ensure your trading strategy is successful Minimal setup required and works well with static TP a

Andrei 154 Sep 12, 2022
GPU-accelerated Image Processing library using OpenCL

pyclesperanto pyclesperanto is a python package for clEsperanto - a multi-language framework for GPU-accelerated image processing. clEsperanto uses Op

17 Dec 25, 2022
Python package to add text to images, textures and different backgrounds

nider Python package for text images generation and watermarking Free software: MIT license Documentation: https://nider.readthedocs.io. nider is an a

Vladyslav Ovchynnykov 131 Dec 30, 2022
On Generating Extended Summaries of Long Documents

ExtendedSumm This repository contains the implementation details and datasets used in On Generating Extended Summaries of Long Documents paper at the

Georgetown Information Retrieval Lab 76 Sep 05, 2022
Pgn2tex - Scripts to convert pgn files to latex document. Useful to build books or pdf from pgn studies

Pgn2Latex (WIP) A simple script to make pdf from pgn files and studies. It's sti

12 Jul 23, 2022
Unofficial PyTorch implementation of Attention Free Transformer (AFT) layers by Apple Inc.

aft-pytorch Unofficial PyTorch implementation of Attention Free Transformer's layers by Zhai, et al. [abs, pdf] from Apple Inc. Installation You can i

Rishabh Anand 184 Dec 12, 2022
Pretty Tensor - Fluent Neural Networks in TensorFlow

Pretty Tensor provides a high level builder API for TensorFlow. It provides thin wrappers on Tensors so that you can easily build multi-layer neural networks.

Google 1.2k Dec 29, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
Deep Learning for 3D Point Clouds: A Survey (IEEE TPAMI, 2020)

🔥Deep Learning for 3D Point Clouds (IEEE TPAMI, 2020)

Qingyong 1.4k Jan 08, 2023
Waymo motion prediction challenge 2021: 3rd place solution

Waymo motion prediction challenge 2021: 3rd place solution 📜 Technical report 🗨️ Presentation 🎉 Announcement 🛆Motion Prediction Channel Website 🛆

158 Jan 08, 2023
🧮 Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model after All

Accompanying source code to the paper "Matrix Factorization for Collaborative Filtering is just Solving an Adjoint Latent Dirichlet Allocation Model A

Florian Wilhelm 39 Dec 03, 2022