HyDiff: Hybrid Differential Software Analysis

Related tags

Deep Learninghydiff
Overview

DOI

HyDiff: Hybrid Differential Software Analysis

This repository provides the tool and the evaluation subjects for the paper HyDiff: Hybrid Differential Software Analysis accepted for the technical track at ICSE'2020. A pre-print of the paper is available here.

Authors: Yannic Noller, Corina S. Pasareanu, Marcel Böhme, Youcheng Sun, Hoang Lam Nguyen, and Lars Grunske.

The repository includes:

A pre-built version of HyDiff is also available as Docker image:

docker pull yannicnoller/hydiff
docker run -it --rm yannicnoller/hydiff

Tool

HyDiff's technical framework is built on top of Badger, DifFuzz, and the Symbolic PathFinder. We provide a complete snapshot of all tools and our extensions.

Requirements

  • Git, Ant, Build-Essentials, Gradle
  • Java JDK = 1.8
  • Python3, Numpy Package
  • recommended: Ubuntu 18.04.1 LTS

Folder Structure

The folder tool contains 2 subfolders: fuzzing and symbolicexecution, representing the both components of HyDiff.

fuzzing

  • afl-differential: The fuzzing component is built on top of DifFuzz and KelinciWCA (the fuzzing part of Badger). Both use AFL as the underlying fuzzing engine. In order to make it easy for the users, we provide our complete modified AFL variant in this folder. Our modifications are based on afl-2.52b.

  • kelinci-differential: Kelinci leverages a server-client architecture to make AFL applicable to Java applications, please refer to the Kelinci poster-paper for more details. We modified it to make usable in a general differential analysis. It includes an interface program to connect the Kelinci server to the AFL fuzzer and the instrumentor project, which is used to instrument the Java bytecode. The instrumentation handles the coverage reporting and the collection of our differential metrics. The Kelinci server handles requests from AFL to execute a mutated input on the application.

symbolicexecution

  • jpf-core: Our symbolic execution is built on top of Symbolic PathFinder (SPF), which is an extension of Java PathFinder (JPF), which makes it necessary to include the core implementation of JPF.

  • jpf-symbc-differential: In order to make SPF applicable to a differential analysis, we modified in several locations and added the ability to perform some sort of shadow symbolic execution (cf. Complete Shadow Symbolic Execution with Java PathFinder). This folder includes the modified SPF project.

  • badger-differential: HyDiff performs a hybrid analysis by running fuzzing and symbolic execution in parallel. This concept is based on Badger, which provides the technical basis for our implementation. This folder includes the modified Badger project, which enables the differential hybrid analysis, incl. the differential dynamic symbolic execution.

How to install the tool and run our evaluation

Be aware that the instructions have been tested for Unix systems only.

  1. First you need to build the tool and the subjects. We provide a script setup.sh to simply build everything. Note: the script may override an existing site.properties file, which is required for JPF/SPF.

  2. Test the installation: the best way to test the installation is to execute the evaluation of our example program (cf. Listing 1 in our paper). You can execute the script run_example.sh. As it is, it will run each analysis (just differential fuzzing, just differential symbolic execution, and the hybrid analysis) once. The values presented in our paper in Section 2.2 are averaged over 30 runs. In order to perform 30 runs each, you can easily adapt the script, but for some first test runs you can leave it as it is. The script should produce three folders:

    • experiments/subjects/example/fuzzer-out-1: results for differential fuzzing
    • experiments/subjects/example/symexe-out-1: results for differential symbolic execution
    • experiments/subjects/example/hydiff-out-1: results for HyDiff (hybrid combination) It will also produce three csv files with the summarized statistics for each experiment:
    • experiments/subjects/example/fuzzer-out-results-n=1-t=600-s=30.csv
    • experiments/subjects/example/symexe-out-results-n=1-t=600-s=30.csv
    • experiments/subjects/example/hydiff-out-results-n=1-t=600-s=30-d=0.csv
  3. After finishing the building process and testing the installation, you can use the provided run scripts (experiments/scripts) to replay HyDiff's evaluation or to perform your own differential analysis. HyDiff's evaluation contains three types of differential analysis. For each of them you will find a separate run script:

In the beginning of each run script you can define the experiment parameters:

  • number_of_runs: N, the number of evaluation runs for each subject (30 for all experiments)
  • time_bound: T, the time bound for the analysis (regression: 600sec, side-channel: 1800sec, and dnn: 3600sec)
  • step_size_eval: S, the step size for the evaluation (30sec for all experiments)
  • [time_symexe_first: D, the delay with which fuzzing gets started after symexe for the DNN subjects] (only DNN)

Each run script first executes differential fuzzing, then differential symbolic execution and then the hybrid analysis. Please adapt our scripts to perform your own analysis.

For each subject, analysis_type, and experiment repetition i the scripts will produce folders like: experiments/subjects/ / -out- , and will summarize the experiments in csv files like: experiments/subjects/ / -out-results-n= -t= -s= -d= .csv .

Complete Evaluation Reproduction

In order to reproduce our evaluation completely, you need to run the three mentioned run scripts. They include the generation of all statistics. Be aware that the mere runtime of all analysis parts is more than 53 days because of the high runtimes and number of repetitions. So it might be worthwhile to run it only for some specific subjects or to run the analysis on different machines in parallel or to modify the runtime or to reduce the number of repetitions. Feel free to adjust the script or reuse it for your own purpose.

Statistics

As mentioned earlier, the statistics will be automatically generated by our run script, which execute the python scripts from the scripts folder to aggregate the several experiment runs. They will generate csv files with the information about the average result values.

For the regression analysis and the DNN analysis we use the scripts:

For the side-channel analysis we use the scripts:

All csv files for our experiments are included in experiments/results.

Feel free to adapt these evaluation scripts for your own purpose.

Maintainers

  • Yannic Noller (yannic.noller at acm.org)

License

This project is licensed under the MIT License - see the LICENSE file for details

You might also like...
Python framework for Stochastic Differential Equations modeling

SDElearn: a Python package for SDE modeling This package implements functionalities for working with Stochastic Differential Equations models (SDEs fo

Differential rendering based motion capture blender project.
Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search
BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search

BossNAS This repository contains PyTorch evaluation code, retraining code and pretrained models of our paper: BossNAS: Exploring Hybrid CNN-transforme

Hybrid Neural Fusion for Full-frame Video Stabilization

FuSta: Hybrid Neural Fusion for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations
Code for Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations

Implementation for Iso-Points (CVPR 2021) Official code for paper Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid Representations paper |

The official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averaging Approach

Graph Optimizer This repo contains the official implementation of our CVPR 2021 paper - Hybrid Rotation Averaging: A Fast and Robust Rotation Averagin

A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie_recs Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Coll

:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network
Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

DeepCDR Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network This work has been accepted to ECCB2020 and was also published in the

Releases(v1.0.0)
  • v1.0.0(Jan 26, 2020)

    First official release for HyDiff. We added all parts of our tool and all evaluation subjects to support the reproduction of our results. This release is submitted to the ICSE 2020 Artifact Evaluation.

    Source code(tar.gz)
    Source code(zip)
Owner
Yannic Noller
Yannic Noller
Social Network Ads Prediction

Social network advertising, also social media targeting, is a group of terms that are used to describe forms of online advertising that focus on social networking services.

Khazar 2 Jan 28, 2022
CVPR 2021 Challenge on Super-Resolution Space

Learning the Super-Resolution Space Challenge NTIRE 2021 at CVPR Learning the Super-Resolution Space challenge is held as a part of the 6th edition of

andreas 104 Oct 26, 2022
YOLOv5 + ROS2 object detection package

YOLOv5-ROS YOLOv5 + ROS2 object detection package This program changes the input of detect.py (ultralytics/yolov5) to sensor_msgs/Image of ROS2. Requi

Ar-Ray 23 Dec 19, 2022
FedML: A Research Library and Benchmark for Federated Machine Learning

FedML: A Research Library and Benchmark for Federated Machine Learning 📄 https://arxiv.org/abs/2007.13518 News 2021-02-01 (Award): #NeurIPS 2020# Fed

FedML-AI 2.3k Jan 08, 2023
Code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge.

Open Sesame This repository contains the code for the paper Open Sesame: Getting Inside BERT's Linguistic Knowledge. Credits We built the project on t

9 Jul 24, 2022
A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution

TecoGAN-PyTorch Introduction This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to

165 Dec 17, 2022
Deploy optimized transformer based models on Nvidia Triton server

🤗 Hugging Face Transformer submillisecond inference 🤯 and deployment on Nvidia Triton server Yes, you can perfom inference with transformer based mo

Lefebvre Sarrut Services 1.2k Jan 05, 2023
This repository contains code and data for "On the Multimodal Person Verification Using Audio-Visual-Thermal Data"

trimodal_person_verification This repository contains the code, and preprocessed dataset featured in "A Study of Multimodal Person Verification Using

ISSAI 7 Aug 31, 2022
Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

DeepCDR Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network This work has been accepted to ECCB2020 and was also published in the

Qiao Liu 50 Dec 18, 2022
Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system

Recommender-Systems Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system So the data

Yash Kumar 0 Jan 20, 2022
Constructing interpretable quadratic accuracy predictors to serve as an objective function for an IQCQP problem that represents NAS under latency constraints and solve it with efficient algorithms.

IQNAS: Interpretable Integer Quadratic programming Neural Architecture Search Realistic use of neural networks often requires adhering to multiple con

0 Oct 24, 2021
Geometric Vector Perceptrons --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Implementation of equivariant GVP-GNNs as described in Learning from Protein Structure with Geometric Vector Perceptrons b

Dror Lab 142 Dec 29, 2022
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

107 Dec 02, 2022
A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

A pure PyTorch batched computation implementation of "CIF: Continuous Integrate-and-Fire for End-to-End Speech Recognition"

張致強 14 Dec 02, 2022
Colab notebook for openai/glide-text2im.

GLIDE text2im on Colab This repository provides a Colab notebook to produce images conditioned on text prompts with GLIDE [1]. Usage Run text2im.ipynb

Wok 19 Oct 19, 2022
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
Machine learning Bot detection technique, based on United States election dataset

Machine learning Bot detection technique, based on United States election dataset (2020). Current github repo provides implementation described in pap

Alexander Shevtsov 4 Nov 20, 2022
Streamlit app demonstrating an image browser for the Udacity self-driving-car dataset with realtime object detection using YOLO.

Streamlit Demo: The Udacity Self-driving Car Image Browser This project demonstrates the Udacity self-driving-car dataset and YOLO object detection in

Streamlit 992 Jan 04, 2023
Invasive Plant Species Identification

Invasive_Plant_Species_Identification Used LiDAR Odometry and Mapping (LOAM) to create a 3D point cloud map which can be used to identify invasive pla

2 May 12, 2022
Full Resolution Residual Networks for Semantic Image Segmentation

Full-Resolution Residual Networks (FRRN) This repository contains code to train and qualitatively evaluate Full-Resolution Residual Networks (FRRNs) a

Toby Pohlen 274 Oct 27, 2022