Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization

Related tags

Deep LearningURST
Overview

Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization

Official PyTorch implementation for our URST (Ultra-Resolution Style Transfer) framework.

URST is a versatile framework for ultra-high resolution style transfer under limited memory resources, which can be easily plugged in most existing neural style transfer methods.

With the growth of the input resolution, the memory cost of our URST hardly increases. Theoretically, it supports style transfer of arbitrary high-resolution images.

One ultra-high resolution stylized result of 12000 x 8000 pixels (i.e., 96 megapixels).

This repository is developed based on six representative style transfer methods, which are Johnson et al., MSG-Net, AdaIN, WCT, LinearWCT, and Wang et al. (Collaborative Distillation).

For details see Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization.

If you use this code for a paper please cite:

@misc{chen2021towards,
      title={Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization}, 
      author={Zhe Chen and Wenhai Wang and Enze Xie and Tong Lu and Ping Luo},
      year={2021},
      eprint={2103.11784},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Environment

  • python3.6, pillow, tqdm, torchfile, pytorch1.1+ (for inference)

    pip install pillow
    pip install tqdm
    pip install torchfile
    conda install pytorch==1.1.0 torchvision==0.3.0 -c pytorch
  • tensorboardX (for training)

    pip install tensorboardX

Then, clone the repository locally:

git clone https://github.com/czczup/URST.git

Test (Ultra-high Resolution Style Transfer)

Step 1: Prepare images

  • Content images and style images are placed in examples/.
  • Since the ultra-high resolution images are quite large, we not place them in this repository. Please download them from this google drive.
  • All content images used in this repository are collected from pexels.com.

Step 2: Prepare models

  • Download models from this google drive. Unzip and merge them into this repository.

Step 3: Stylization

First, choose a specific style transfer method and enter the directory.

Then, please run the corresponding script. The stylized results will be saved in output/.

  • For Johnson et al., we use the PyTorch implementation Fast-Neural-Style-Transfer.

    cd Johnson2016Perceptual/
    CUDA_VISIBLE_DEVICES=<gpu_id> python test.py --content <content_path> --model <model_path> --URST
  • For MSG-Net, we use the official PyTorch implementation PyTorch-Multi-Style-Transfer.

    cd Zhang2017MultiStyle/
    CUDA_VISIBLE_DEVICES=<gpu_id> python test.py --content <content_path> --style <style_path> --URST
  • For AdaIN, we use the PyTorch implementation pytorch-AdaIN.

    cd Huang2017AdaIN/
    CUDA_VISIBLE_DEVICES=<gpu_id> python test.py --content <content_path> --style <style_path> --URST
  • For WCT, we use the PyTorch implementation PytorchWCT.

    cd Li2017Universal/
    CUDA_VISIBLE_DEVICES=<gpu_id> python test.py --content <content_path> --style <style_path> --URST
  • For LinearWCT, we use the official PyTorch implementation LinearStyleTransfer.

    cd Li2018Learning/
    CUDA_VISIBLE_DEVICES=<gpu_id> python test.py --content <content_path> --style <style_path> --URST
  • For Wang et al. (Collaborative Distillation), we use the official PyTorch implementation Collaborative-Distillation.

    cd Wang2020Collaborative/PytorchWCT/
    CUDA_VISIBLE_DEVICES=<gpu_id> python test.py --content <content_path> --style <style_path> --URST

Optional options:

  • --patch_size: The maximum size of each patch. The default setting is 1000.
  • --style_size: The size of the style image. The default setting is 1024.
  • --thumb_size: The size of the thumbnail image. The default setting is 1024.
  • --URST: Use our URST framework to process ultra-high resolution images.

Train (Enlarge the Stroke Size)

Step 1: Prepare datasets

Download the MS-COCO 2014 dataset and WikiArt dataset.

  • MS-COCO

    wget http://msvocds.blob.core.windows.net/coco2014/train2014.zip
  • WikiArt

    • Either manually download from kaggle.
    • Or install kaggle-cli and download by running:
    kg download -u <username> -p <password> -c painter-by-numbers -f train.zip

Step 2: Prepare models

As same as the Step 2 in the test phase.

Step 3: Train the decoder with our stroke perceptual loss

  • For AdaIN:

    cd Huang2017AdaIN/
    CUDA_VISIBLE_DEVICES=<gpu_id> python trainv2.py --content_dir <coco_path> --style_dir <wikiart_path>
  • For LinearWCT:

    cd Li2018Learning/
    CUDA_VISIBLE_DEVICES=<gpu_id> python trainv2.py --contentPath <coco_path> --stylePath <wikiart_path>

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Owner
czczup
Knowledge is infinite.
czczup
Official implementation of ACMMM'20 paper 'Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework'

Self-supervised Video Representation Learning Using Inter-intra Contrastive Framework Official code for paper, Self-supervised Video Representation Le

Li Tao 103 Dec 21, 2022
The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch Railway

Openspoor The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch

7 Aug 22, 2022
FOSS Digital Asset Distribution Platform built on Frappe.

Digistore FOSS Digital Assets Marketplace. Distribute digital assets, like a pro. Video Demo Here Features Create, attach and list digital assets (PDF

Mohammad Hussain Nagaria 30 Dec 08, 2022
A Survey on Deep Learning Technique for Video Segmentation

A Survey on Deep Learning Technique for Video Segmentation A Survey on Deep Learning Technique for Video Segmentation Wenguan Wang, Tianfei Zhou, Fati

Tianfei Zhou 112 Dec 12, 2022
Official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

Vision Transformer with Progressive Sampling This is the official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

yuexy 123 Jan 01, 2023
Stereo Hybrid Event-Frame (SHEF) Cameras for 3D Perception, IROS 2021

For academic use only. Stereo Hybrid Event-Frame (SHEF) Cameras for 3D Perception Ziwei Wang, Liyuan Pan, Yonhon Ng, Zheyu Zhuang and Robert Mahony Th

Ziwei Wang 11 Jan 04, 2023
Object Depth via Motion and Detection Dataset

ODMD Dataset ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with ea

Brent Griffin 172 Dec 21, 2022
This is an official implementation for "Video Swin Transformers".

Video Swin Transformer By Ze Liu*, Jia Ning*, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin and Han Hu. This repo is the official implementation of "V

Swin Transformer 981 Jan 03, 2023
Re-implememtation of MAE (Masked Autoencoders Are Scalable Vision Learners) using PyTorch.

mae-repo PyTorch re-implememtation of "masked autoencoders are scalable vision learners". In this repo, it heavily borrows codes from codebase https:/

Peng Qiao 1 Dec 14, 2021
CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery This paper (CoANet) has been published in IEEE TIP 2021. This code i

Jie Mei 53 Dec 03, 2022
Compact Bilinear Pooling for PyTorch

Compact Bilinear Pooling for PyTorch. This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch. This

Grégoire Payen de La Garanderie 234 Dec 07, 2022
(NeurIPS 2020) Wasserstein Distances for Stereo Disparity Estimation

Wasserstein Distances for Stereo Disparity Estimation Accepted in NeurIPS 2020 as Spotlight. [Project Page] Wasserstein Distances for Stereo Disparity

Divyansh Garg 92 Dec 12, 2022
Federated Learning Based on Dynamic Regularization

Federated Learning Based on Dynamic Regularization This is implementation of Federated Learning Based on Dynamic Regularization. Requirements Please i

39 Jan 07, 2023
Neural Koopman Lyapunov Control

Neural-Koopman-Lyapunov-Control Code for our paper: Neural Koopman Lyapunov Control Requirements dReal4: v4.19.02.1 PyTorch: 1.2.0 The learning framew

Vrushabh Zinage 6 Dec 24, 2022
Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers

Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers Results results on COCO val Backbone Method Lr Schd PQ Config Download

155 Dec 20, 2022
These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations"

Few-shot-NLEs These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations". You can find the smal

Yordan Yordanov 0 Oct 21, 2022
Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

41 Jan 04, 2023
Subdivision-based Mesh Convolutional Networks

Subdivision-based Mesh Convolutional Networks The official implementation of SubdivNet in our paper, Subdivion-based Mesh Convolutional Networks Requi

Zheng-Ning Liu 181 Dec 28, 2022
Code for ICDM2020 full paper: "Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning"

Subg-Con Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning (Jiao et al., ICDM 2020): https://arxiv.org/abs/2009.10273 Over

34 Jul 06, 2022
PAWS 🐾 Predicting View-Assignments with Support Samples

This repo provides a PyTorch implementation of PAWS (predicting view assignments with support samples), as described in the paper Semi-Supervised Learning of Visual Features by Non-Parametrically Pre

Facebook Research 437 Dec 23, 2022