This is the official repo for TransFill: Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations at CVPR'21. According to some product reasons, we are not planning to release the training/testing codes and models. However, we will release the dataset and the scripts to prepare the dataset.

Overview

TransFill-Reference-Inpainting

This is the official repo for TransFill: Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations (Yuqian Zhou, Connelly Barnes, Eli Shechtman, Sohrab Amirghodsi) at CVPR'21. According to some confidential reasons, we are not planning to release the training/testing codes and models. Online-demo will be public once we set up the server. However, we release the testing dataset for comparsion, and the scripts to prepare the training dataset.

[Paper] | [Project] | [Demo Video]

Introduction

Applications of TransFill: Photo Content Swap, Object Removal, Color Adjustment.

Image inpainting is the task of plausibly restoring missing pixels within a hole region that is to be removed from a target image. Most existing technologies exploit patch similarities within the image, or leverage large-scale training data to fill the hole using learned semantic and texture information. However, due to the ill-posed nature of the inpainting task, such methods struggle to complete larger holes containing complicated scenes. In this paper, we propose TransFill, a multi-homography transformed fusion method to fill the hole by referring to another source image that shares scene contents with the target image. We first align the source image to the target image by estimating multiple homographies guided by different depth levels. We then learn to adjust the color and apply a pixel-level warping to each homography-warped source image to make it more consistent with the target. Finally, a pixel-level fusion module is learned to selectively merge the different proposals. Our method achieves state-of-the-art performance on pairs of images across a variety of wide baselines and color differences, and generalizes to user-provided image pairs.

Download and Prepare RealEstate10K

We prepare the script of downloading and extracting paired frames from RealEstate10K. First, go to the RealEstate10K official website to download the .txt files. Then unzip it and put the folder into the data folder.

Run our script to download the video samples and extract paired frames with frame difference (stride) 10, 20 and 30.

python download_realestate10k.py \
--txt_dir ./data/RealEstate10K/train \
--out_dir ./RealEstate10K_frames/train \
--dataset_dir ./RealEstate10K_pair/train \
--sample_num 10

Choose the sample number to download limited number of samples (say 100 videos). You may need to install youtube-dl package or VPNs (in Mainland China) to download YouTube videos. Google also has some limitations of downloading amount, so I did not use multi-thread to increase the downloading speed on purpose. The process is fairly long, so I suggest downloading a subset of videos to extract samples first, and gradually extending it to download the whole dataset. Any other downloading issues, please inquire the original provider of RealEstate10K.

Download Testing Data

We shared the testing images in the paper, including the 'Small Set' containing 300 pairs of images from RealEstate10K, and a 'Real Set' containing 100+ challenging paired images from users. The data can be downloaded from the Google Drive.

To reproduce the results in the Table 1 of the paper, download and unzip the 'Small Set' into data folder, and run

python compute_metrics.py

The script will compare the images generated by TransFill with the ground truth images in the target folder, and return PSNR, SSIM and LPIPS score.

In the 'Real Set', ProFill and TransFill results are shared for the researchers to compare. Note that there are some failure cases within the folder, which shows the room for future works to improve TransFill.

Test on Your Own Data

We plan to set up the online demo server in the near future. But before we finish that, if you are really eager for a comparsion of the results for research purpose, feel free to send the testing data in the format of 'target', 'source', 'hole' folders to [email protected]. The resolution has better be smaller than 1K x 1K, otherwise we have to resize the image to avoid memory issues. To make fully use of the advantages of TransFill, we suggest the hole to be large enough by including more background contents of the target image.

We won't keep your data and will return the testing results to you within 2 working days.

Citation

If you think this repo and the manuscript helpful, please consider citing us.

@inproceedings{zhou2021transfill,
  title={TransFill: Reference-guided Image Inpainting by Merging Multiple Color and Spatial Transformations},
  author={Zhou, Yuqian and Barnes, Connelly and Shechtman, Eli and Amirghodsi, Sohrab},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={2266--2276},
  year={2021}
}

Acknowledgements

This project is conducted when the author interned at Adobe Photoshop and Adobe Research.

Owner
Yuqian Zhou
Ph.D of Beckman Institute, UIUC Mphil of ECE in HKUST.
Yuqian Zhou
[CVPR 2022] Unsupervised Image-to-Image Translation with Generative Prior

GP-UNIT - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Unsupervised Image-to-

Shuai Yang 125 Jan 03, 2023
Metrics to evaluate quality and efficacy of synthetic datasets.

An Open Source Project from the Data to AI Lab, at MIT Metrics for Synthetic Data Generation Projects Website: https://sdv.dev Documentation: https://

The Synthetic Data Vault Project 129 Jan 03, 2023
For AILAB: Cross Lingual Retrieval on Yelp Search Engine

Cross-lingual Information Retrieval Model for Document Search Train Phase CUDA_VISIBLE_DEVICES="0,1,2,3" \ python -m torch.distributed.launch --nproc_

Chilia Waterhouse 104 Nov 12, 2022
Solving reinforcement learning tasks which require language and vision

Multimodal Reinforcement Learning JAX implementations of the following multimodal reinforcement learning approaches. Dual-coding Episodic Memory from

Henry Prior 31 Feb 26, 2022
The challenge for Quantum Coalition Hackathon 2021

Qchack 2021 Google Challenge This is a challenge for the brave 2021 qchack.io participants. Instructions Hello, intrepid qchacker, welcome to the G|o

quantumlib 18 May 04, 2022
Rotation-Only Bundle Adjustment

ROBA: Rotation-Only Bundle Adjustment Paper, Video, Poster, Presentation, Supplementary Material In this repository, we provide the implementation of

Seong 51 Nov 29, 2022
code associated with ACL 2021 DExperts paper

DExperts Hi! This repository contains code for the paper DExperts: Decoding-Time Controlled Text Generation with Experts and Anti-Experts to appear at

Alisa Liu 68 Dec 15, 2022
Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style disentanglement in image generation and translation" (ICCV 2021)

DiagonalGAN Official Pytorch Implementation of "Diagonal Attention and Style-based GAN for Content-Style Disentanglement in Image Generation and Trans

32 Dec 06, 2022
Official implementation of "Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform", ICCV 2021

Variable-Rate Deep Image Compression through Spatially-Adaptive Feature Transform This repository is the implementation of "Variable-Rate Deep Image C

Myungseo Song 47 Dec 13, 2022
Training BERT with Compute/Time (Academic) Budget

Training BERT with Compute/Time (Academic) Budget This repository contains scripts for pre-training and finetuning BERT-like models with limited time

Intel Labs 263 Jan 07, 2023
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 06, 2022
An AI Assistant More Than a Toolkit

tymon An AI Assistant More Than a Toolkit The reason for creating framework tymon is simple. making AI more like an assistant, helping us to complete

TymonXie 46 Oct 24, 2022
Unofficial PyTorch Implementation for HifiFace (https://arxiv.org/abs/2106.09965)

HifiFace — Unofficial Pytorch Implementation Image source: HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping (figure 1, pg. 1)

MINDs Lab 218 Jan 04, 2023
LSTM built using Keras Python package to predict time series steps and sequences. Includes sin wave and stock market data

LSTM Neural Network for Time Series Prediction LSTM built using the Keras Python package to predict time series steps and sequences. Includes sine wav

Jakob Aungiers 4.1k Jan 02, 2023
Official code base for the poster "On the use of Cortical Magnification and Saccades as Biological Proxies for Data Augmentation" published in NeurIPS 2021 Workshop (SVRHM)

Self-Supervised Learning (SimCLR) with Biological Plausible Image Augmentations Official code base for the poster "On the use of Cortical Magnificatio

Binxu 8 Aug 17, 2022
RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining

RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining Our code is based on Learning Attention-based Embed

宋朝都 4 Aug 07, 2022
Official implementation for ICDAR 2021 paper "Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer"

Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer Description Convert offline handwritten mathematical expressi

Wenqi Zhao 87 Dec 27, 2022
Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Seulki Park 70 Jan 03, 2023
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which reaches a median HNS of 205.7 after only 10M frames (the original Rainbow from Hessel et al. 2017 re

Dominik Schmidt 31 Dec 21, 2022
Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd.

Head Detector Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd. The head_detection mod

Ramana Sundararaman 76 Dec 06, 2022