A PyTorch implementation of "SimGNN: A Neural Network Approach to Fast Graph Similarity Computation" (WSDM 2019).

Overview

SimGNN

PWC codebeat badge repo sizebenedekrozemberczki⠀⠀

A PyTorch implementation of SimGNN: A Neural Network Approach to Fast Graph Similarity Computation (WSDM 2019).

Abstract

Graph similarity search is among the most important graph-based applications, e.g. finding the chemical compounds that are most similar to a query compound. Graph similarity/distance computation, such as Graph Edit Distance (GED) and Maximum Common Subgraph (MCS), is the core operation of graph similarity search and many other applications, but very costly to compute in practice. Inspired by the recent success of neural network approaches to several graph applications, such as node or graph classification, we propose a novel neural network based approach to address this classic yet challenging graph problem, aiming to alleviate the computational burden while preserving a good performance. The proposed approach, called SimGNN, combines two strategies. First, we design a learnable embedding function that maps every graph into an embedding vector, which provides a global summary of a graph. A novel attention mechanism is proposed to emphasize the important nodes with respect to a specific similarity metric. Second, we design a pairwise node comparison method to sup plement the graph-level embeddings with fine-grained node-level information. Our model achieves better generalization on unseen graphs, and in the worst case runs in quadratic time with respect to the number of nodes in two graphs. Taking GED computation as an example, experimental results on three real graph datasets demonstrate the effectiveness and efficiency of our approach. Specifically, our model achieves smaller error rate and great time reduction compared against a series of baselines, including several approximation algorithms on GED computation, and many existing graph neural network based models. Our study suggests SimGNN provides a new direction for future research on graph similarity computation and graph similarity search.

This repository provides a PyTorch implementation of SimGNN as described in the paper:

SimGNN: A Neural Network Approach to Fast Graph Similarity Computation. Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, Wei Wang. WSDM, 2019. [Paper]

A reference Tensorflow implementation is accessible [here] and another implementation is [here].

Requirements

The codebase is implemented in Python 3.5.2. package versions used for development are just below.

networkx          2.4
tqdm              4.28.1
numpy             1.15.4
pandas            0.23.4
texttable         1.5.0
scipy             1.1.0
argparse          1.1.0
torch             1.1.0
torch-scatter     1.4.0
torch-sparse      0.4.3
torch-cluster     1.4.5
torch-geometric   1.3.2
torchvision       0.3.0
scikit-learn      0.20.0

Datasets

The code takes pairs of graphs for training from an input folder where each pair of graph is stored as a JSON. Pairs of graphs used for testing are also stored as JSON files. Every node id and node label has to be indexed from 0. Keys of dictionaries are stored strings in order to make JSON serialization possible.

Every JSON file has the following key-value structure:

{"graph_1": [[0, 1], [1, 2], [2, 3], [3, 4]],
 "graph_2":  [[0, 1], [1, 2], [1, 3], [3, 4], [2, 4]],
 "labels_1": [2, 2, 2, 2],
 "labels_2": [2, 3, 2, 2, 2],
 "ged": 1}

The **graph_1** and **graph_2** keys have edge list values which descibe the connectivity structure. Similarly, the **labels_1** and **labels_2** keys have labels for each node which are stored as list - positions in the list correspond to node identifiers. The **ged** key has an integer value which is the raw graph edit distance for the pair of graphs.

Options

Training a SimGNN model is handled by the `src/main.py` script which provides the following command line arguments.

Input and output options

  --training-graphs   STR    Training graphs folder.      Default is `dataset/train/`.
  --testing-graphs    STR    Testing graphs folder.       Default is `dataset/test/`.

Model options

  --filters-1             INT         Number of filter in 1st GCN layer.       Default is 128.
  --filters-2             INT         Number of filter in 2nd GCN layer.       Default is 64. 
  --filters-3             INT         Number of filter in 3rd GCN layer.       Default is 32.
  --tensor-neurons        INT         Neurons in tensor network layer.         Default is 16.
  --bottle-neck-neurons   INT         Bottle neck layer neurons.               Default is 16.
  --bins                  INT         Number of histogram bins.                Default is 16.
  --batch-size            INT         Number of pairs processed per batch.     Default is 128. 
  --epochs                INT         Number of SimGNN training epochs.        Default is 5.
  --dropout               FLOAT       Dropout rate.                            Default is 0.5.
  --learning-rate         FLOAT       Learning rate.                           Default is 0.001.
  --weight-decay          FLOAT       Weight decay.                            Default is 10^-5.
  --histogram             BOOL        Include histogram features.              Default is False.

Examples

The following commands learn a neural network and score on the test set. Training a SimGNN model on the default dataset.

python src/main.py

Training a SimGNN model for a 100 epochs with a batch size of 512.

python src/main.py --epochs 100 --batch-size 512

Training a SimGNN with histogram features.

python src/main.py --histogram

Training a SimGNN with histogram features and a large bin number.

python src/main.py --histogram --bins 32

Increasing the learning rate and the dropout.

python src/main.py --learning-rate 0.01 --dropout 0.9

You can save the trained model by adding the --save-path parameter.

python src/main.py --save-path /path/to/model-name

Then you can load a pretrained model using the --load-path parameter; note that the model will be used as-is, no training will be performed.

python src/main.py --load-path /path/to/model-name

License

Comments
  • Model test error is too high

    Model test error is too high

    I'm sorry to bother you.But when I tried to replicate your work,I ran into some difficulties. Here is the problem I met:

    python src/main.py +---------------------+------------------+ | Batch size | 128 | +=====================+==================+ | Bins | 16 | +---------------------+------------------+ | Bottle neck neurons | 16 | +---------------------+------------------+ | Dropout | 0.500 | +---------------------+------------------+ | Epochs | 5 | +---------------------+------------------+ | Filters 1 | 128 | +---------------------+------------------+ | Filters 2 | 64 | +---------------------+------------------+ | Filters 3 | 32 | +---------------------+------------------+ | Histogram | 0 | +---------------------+------------------+ | Learning rate | 0.001 | +---------------------+------------------+ | Tensor neurons | 16 | +---------------------+------------------+ | Testing graphs | ./dataset/test/ | +---------------------+------------------+ | Training graphs | ./dataset/train/ | +---------------------+------------------+ | Weight decay | 0.001 | +---------------------+------------------+

    Enumerating unique labels.

    100%|██████████████████████████████████████████████████████████████████████████████████| 100/100 [00:00<00:00, 2533.57it/s]

    Model training.

    Epoch: 0%| | 0/5 [00:00<?, ?it/s] /home/jovyan/SimGNN/src/simgnn.py:212: UserWarning: Using a target size (torch.Size([1, 1])) that is different to the input size (torch.Size([1])). This will likely lead to incorrect results due to broadcasting. Please ensure they havethe same size. losses = losses + torch.nn.functional.mse_loss(data["target"], prediction) Epoch (Loss=3.87038): 100%|██████████████████████████████████████████████████████████████████| 5/5 [00:16<00:00, 3.23s/it] Batches: 100%|███████████████████████████████████████████████████████████████████████████████| 1/1 [00:01<00:00, 1.68s/it]

    Model evaluation.

    100%|█████████████████████████████████████████████████████████████████████████████████████| 50/50 [00:00<00:00, 102.39it/s]

    Baseline error: 0.41597.

    Model test error: 0.94024.

    I found the model test error too high! The only thing I changed was the version of the libraries,which I replaced with the latest. Could you help me with this problem?

    opened by Alice314 7
  • About dataset

    About dataset

    I am really interested in this amazing work, but I don't understand how datasets are generated (or processed), or are training data and test data generated from public data sets (just like Linux, AIDS, mentioned in the paper)? I desire to know how syngen.py works and the output of this function.

    Thanks a lot.

    opened by BenedictWongBJUT 6
  • Extracting Latent Space

    Extracting Latent Space

    How would you recommend we approach creating network embeddings (entire network is single point/vector) using this library?

    I was thinking of modifying the forward pass to output similarity and running MDS on the similarity matrix if I'm doing all vs all on the test set.

    I am hoping to compare a couple hundred generated graphs via ERGM and latent ERGM as well as other network approaches to the original graph and output an embedding of all of the graphs.

    Please let me know your recommendations before this becomes a time sink, else, I can find a way to hack it. Thanks!

    opened by jlevy44 4
  • Questions about the model.

    Questions about the model.

    Sorry for using this section to ask technical question rather than code-wise. Had a few questions.

    • Do you have the pretrained model on any of the dataset (like IMDB) the paper talks about? The size of sample in the github dataset is small.
    • Am I right that there is no early stopping in the model? As there is no validation set. [the reason I am asking this question is as I use a bigger dataset, with higher number of epochs, most of the ged predicted values are around 1]
    opened by BehroozMansouri 3
  • Error adapting code

    Error adapting code

    Hey! I am facing some issues adapting your SimGNN code into my graph dataset. I keep encountering an error that says:

    RuntimeError: Invalid index in scatterAdd at ../aten/src/TH/generic/THTensorEvenMoreMath.cpp:520

    I even tried to change one of the training JSON files to the example of the labels and graph structure you gave. I also see a warning about size.

    Am I missing something? Any help would be greatly appreciated.

    opened by kalkidann 3
  • Notice on package versions

    Notice on package versions

    Hello,

    Trying (with some struggle unfortunately) to get this to run, I noticed that the requirements' package versions in the README file are different to some package versions in the requirements.txt.

    You may want to check that out.

    Best.

    opened by Chuhtra 2
  • Performance of SimGNN

    Performance of SimGNN

    Hi @benedekrozemberczki

    We recently used this implementation of SimGNN and noticed that the performance does not match to the one that is outlined in the paper. In particular, for AIDS dataset we get an order of magnitude higher MSE that in the original paper. Did you verify that this implementation match the performance of the paper?

    P.S. we also benchmarked the orignal repo of SimGNN and noticed that it produces slightly better results, even though it's very long to run until convergence.

    opened by nd7141 2
  • Visualizing Attention

    Visualizing Attention

    Hi, I want to visualize the attention with respect to the input graph (like Figure 5 in the paper). Can you please guide me how to visualize the attention weight with the input graphs?

    opened by sajjadriaj 2
  • Add ability to save and load a trained model

    Add ability to save and load a trained model

    To achieve repeatable results, it was also necessary to keep the label in fixed order, so that the resulting one-hot encoding vectors are the same across different runs.

    Explanation of this feature has been added to the README.

    opened by Carlovan 1
  • Batch processing required.

    Batch processing required.

    Hi.

    Is there a version of the code where we can send batched data into the model? Current version works on one graph pair at a time. This is taking too long for larger training data with each data point being fed one at a time into the model via for loop.

    Thanks.

    opened by Indradyumna 1
  • Import error for scatter_cuda

    Import error for scatter_cuda

    Hi there,

    I am having a “no module named touchy_scatter .scatter_cuda” import error. I am sure I have the necessary toolkits and driver installed.

    Does the code require a GPU environment?

    opened by jonathan-goh 1
  • Error in the example from readme

    Error in the example from readme

    In the example in the repo: {"graph_1": [[0, 1], [1, 2], [2, 3], [3, 4]], "graph_2": [[0, 1], [1, 2], [1, 3], [3, 4], [2, 4]], "labels_1": [2, 2, 2, 2], "labels_2": [2, 3, 2, 2, 2], "ged": 1} I think there is a label missing in labels_1. Also the ged for the example is 2 if we consider the missing label is 2. Am I missing smth?

    opened by merascu 1
Releases(v_00001)
Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
Extracts data from the database for a graph-node and stores it in parquet files

subgraph-extractor Extracts data from the database for a graph-node and stores it in parquet files Installation For developing, it's recommended to us

Cardstack 0 Jan 10, 2022
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Michael Schlichtkrull 29 Sep 02, 2022
L-Verse: Bidirectional Generation Between Image and Text

Far beyond learning long-range interactions of natural language, transformers are becoming the de-facto standard for many vision tasks with their power and scalabilty

Kim, Taehoon 102 Dec 21, 2022
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021) Pytorch implementation of the ArTIST motion model. In this repo

Fatemeh 38 Dec 12, 2022
QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper)

QAHOI QAHOI: Query-Based Anchors for Human-Object Interaction Detection (paper) Requirements PyTorch = 1.5.1 torchvision = 0.6.1 pip install -r requ

38 Dec 29, 2022
Arabic Car License Recognition. A solution to the kaggle competition Machathon 3.0.

Transformers Arabic licence plate recognition 🚗 Solution to the kaggle competition Machathon 3.0. Ranked in the top 6️⃣ at the final evaluation phase

Noran Hany 17 Dec 04, 2022
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

[ICLR 2022] The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training The Unreasonable Effectiveness of

VITA 44 Dec 23, 2022
Contrastive Learning with Non-Semantic Negatives

Contrastive Learning with Non-Semantic Negatives This repository is the official implementation of Robust Contrastive Learning Using Negative Samples

39 Jul 31, 2022
DaReCzech is a dataset for text relevance ranking in Czech

Dataset DaReCzech is a dataset for text relevance ranking in Czech. The dataset consists of more than 1.6M annotated query-documents pairs,

Seznam.cz a.s. 8 Jul 26, 2022
Code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectrograms, using the PyTorch Lightning.

stereoEEG2speech We provide code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectro

15 Nov 11, 2022
Redash reset for python

redash-reset This will use a default REDASH_SECRET_KEY key of c292a0a3aa32397cdb050e233733900f this allows you to reset the password of the user ID bu

Robert Wiggins 5 Nov 14, 2022
The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction".

LEAR The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction". **The code is in the "master

杨攀 93 Jan 07, 2023
Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Receptive Field Block Net for Accurate and Fast Object Detection By Songtao Liu, Di Huang, Yunhong Wang Updatas (2021/07/23): YOLOX is here!, stronger

Liu Songtao 1.4k Dec 21, 2022
MNE: Magnetoencephalography (MEG) and Electroencephalography (EEG) in Python

MNE-Python MNE-Python software is an open-source Python package for exploring, visualizing, and analyzing human neurophysiological data such as MEG, E

MNE tools for MEG and EEG data analysis 2.1k Dec 28, 2022
Depth image based mouse cursor visual haptic

Depth image based mouse cursor visual haptic How to run it. Install pyqt5. Install python modules pip install Pillow pip install numpy For illustrati

Xiong Jie 17 Dec 20, 2022
Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data

FTLNet_Pytorch Pytorch codes for Feature Transfer Learning for Face Recognition with Under-Represented Data 1. Introduction This repo is an unofficial

1 Nov 04, 2020
GNPy: Optical Route Planning and DWDM Network Optimization

GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks

Telecom Infra Project 140 Dec 19, 2022
FinRL­-Meta: A Universe for Data­-Driven Financial Reinforcement Learning. 🔥

FinRL-Meta: A Universe of Market Environments. FinRL-Meta is a universe of market environments for data-driven financial reinforcement learning. Users

AI4Finance Foundation 543 Jan 08, 2023
Vision-Language Pre-training for Image Captioning and Question Answering

VLP This repo hosts the source code for our AAAI2020 work Vision-Language Pre-training (VLP). We have released the pre-trained model on Conceptual Cap

Luowei Zhou 373 Jan 03, 2023
Codes for TS-CAM: Token Semantic Coupled Attention Map for Weakly Supervised Object Localization.

TS-CAM: Token Semantic Coupled Attention Map for Weakly SupervisedObject Localization This is the official implementaion of paper TS-CAM: Token Semant

vasgaowei 112 Jan 02, 2023