Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Overview

Face Identity Disentanglement via Latent Space Mapping

Description

Official Implementation of the paper Face Identity Disentanglement via Latent Space Mapping for both training and evaluation.

Face Identity Disentanglement via Latent Space Mapping
Yotam Nitzan1, Amit Bermano1, Yangyan Li2, Daniel Cohen-Or1
1Tel-Aviv University, 2Alibaba
https://arxiv.org/abs/2005.07728

Abstract: Learning disentangled representations of data is a fundamental problem in artificial intelligence. Specifically, disentangled latent representations allow generative models to control and compose the disentangled factors in the synthesis process. Current methods, however, require extensive supervision and training, or instead, noticeably compromise quality. In this paper, we present a method that learns how to represent data in a disentangled way, with minimal supervision, manifested solely using available pre-trained networks. Our key insight is to decouple the processes of disentanglement and synthesis, by employing a leading pre-trained unconditional image generator, such as StyleGAN. By learning to map into its latent space, we leverage both its state-of-the-art quality, and its rich and expressive latent space, without the burden of training it. We demonstrate our approach on the complex and high dimensional domain of human heads. We evaluate our method qualitatively and quantitatively, and exhibit its success with de-identification operations and with temporal identity coherency in image sequences. Through extensive experimentation, we show that our method successfully disentangles identity from other facial attributes, surpassing existing methods, even though they require more training and supervision.

Setup

To setup everything you need check out the setup instructions.

Training

Preparing the Dataset

The dataset is comprised of StyleGAN-generated images and W latent codes, both are generated from a single StyleGAN model.

We also use real images from FFHQ to evaluate quality at test time.

The dataset is assumed to be in the following structure:

Path Description
base directory Directory for all datasets
├  real FFHQ image dataset
├  dataset_N dataset for resolution NxN
│  ├  images images generated by StyleGAN
│  └  ws W latent codes generated by StyleGAN

To generate the dataset_N directory, run:

cd utils\
python generate_fake_data.py \ 
    --resolution N \
    --batch_size BATCH_SIZE \
    --output_path OUTPUT_PATH \
    --pretrained_models_path PRETRAINED_MODELS_PATH \
    --num_images NUM_IMAGES \
    --gpu GPU

It will generate an image dataset in similar format to FFHQ.

Start training

To train the model as done in the paper

python main.py
    NAME
    --resolution N
    --pretrained_models_path PRETRAINED_MODELS_PATH
    --dataset BASE_DATASET_DIR
    --batch_size BATCH_SIZE
    --cross_frequency 3
    --train_data_size 70000
    --results_dir RESULTS_DIR        

Please run python main.py -h for more details.

Inference

For convenience, there are a few inference functions - each serving a different use case. The functions are resolved using the name of the function.

All possible combinations in dirs

Input data: Two directories, one identity inputs and another for attribute inputs.
Runs over all N*M combinations in two directories.

python test.py 
    Name
    --pretrained_models_path PRETRAINED_MODELS_PATH \
    --load_checkpoint PATH_TO_WEIGHTS \
    --id_dir DIR_OF_IMAGES_FOR_ID \
    --attr_dir DIR_OF_IMAGES_FOR_ATTR \
    --output_dir DIR_FOR_OUTPUTS \
    --test_func infer_on_dirs

Paired data

Input data: Two directories, one identity inputs and another for attribute inputs.
The two directories are assumed to be paired. Inference runs on images with the same names.

python test.py 
    Name
    --pretrained_models_path PRETRAINED_MODELS_PATH \
    --load_checkpoint PATH_TO_WEIGHTS \
    --id_dir DIR_OF_IMAGES_FOR_ID \
    --attr_dir DIR_OF_IMAGES_FOR_ATTR \
    --output_dir DIR_FOR_OUTPUTS \
    --test_func infer_pairs

Disentangled interpolation

Interpolating attributes

Interpolating identity

Input data: A directory with any number of subdirectories. In each subdir, there are three images. All images should have exactly one of attr or id in their name. If there are two attr images and one id image, it will interpolate attribute. If there is one attr images and two id images, it will interpolate identity.

python test.py 
    Name
    --pretrained_models_path PRETRAINED_MODELS_PATH \
    --load_checkpoint PATH_TO_WEIGHTS \
    --input_dir PARENT_DIR \
    --output_dir DIR_FOR_OUTPUTS \
    --test_func interpolate

Checkpoints

Our pretrained 256x256 checkpoint is also available.

Citation

If you use this code for your research, please cite our paper using:

@article{Nitzan2020FaceID,
  title={Face identity disentanglement via latent space mapping},
  author={Yotam Nitzan and A. Bermano and Yangyan Li and D. Cohen-Or},
  journal={ACM Transactions on Graphics (TOG)},
  year={2020},
  volume={39},
  pages={1 - 14}
}
Exploration-Exploitation Dilemma Solving Methods

Exploration-Exploitation Dilemma Solving Methods Medium article for this repo - HERE In ths repo I implemented two techniques for tackling mentioned t

Aman Mishra 6 Jan 25, 2022
MLOps will help you to understand how to build a Continuous Integration and Continuous Delivery pipeline for an ML/AI project.

page_type languages products description sample python azure azure-machine-learning-service azure-devops Code which demonstrates how to set up and ope

1 Nov 01, 2021
Finite Element Analysis

FElupe - Finite Element Analysis FElupe is a Python 3.6+ finite element analysis package focussing on the formulation and numerical solution of nonlin

Andreas D. 20 Jan 09, 2023
Source code of the paper Meta-learning with an Adaptive Task Scheduler.

ATS About Source code of the paper Meta-learning with an Adaptive Task Scheduler. If you find this repository useful in your research, please cite the

Huaxiu Yao 16 Dec 26, 2022
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies

Deconfounding Temporal Autoencoder (DTA) This is a repository for the paper "Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Tim

Milan Kuzmanovic 3 Feb 04, 2022
Official Python implementation of the 'Sparse deconvolution'-v0.3.0

Sparse deconvolution Python v0.3.0 Official Python implementation of the 'Sparse deconvolution', and the CPU (NumPy) and GPU (CuPy) calculation backen

Weisong Zhao 23 Dec 28, 2022
A small fun project using python OpenCV, mediapipe, and pydirectinput

Here I tried a small fun project using python OpenCV, mediapipe, and pydirectinput. Here we can control moves car game when yellow color come to right box (press key 'd') left box (press key 'a') lef

Sameh Elisha 3 Nov 17, 2022
A Flow-based Generative Network for Speech Synthesis

WaveGlow: a Flow-based Generative Network for Speech Synthesis Ryan Prenger, Rafael Valle, and Bryan Catanzaro In our recent paper, we propose WaveGlo

NVIDIA Corporation 2k Dec 26, 2022
This repository contains the code used in the paper "Prompt-Based Multi-Modal Image Segmentation".

Prompt-Based Multi-Modal Image Segmentation This repository contains the code used in the paper "Prompt-Based Multi-Modal Image Segmentation". The sys

Timo Lüddecke 305 Dec 30, 2022
Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

ming71 56 Nov 28, 2022
Code repository for our paper regarding the L3D dataset.

The Large Labelled Logo Dataset (L3D): A Multipurpose and Hand-Labelled Continuously Growing Dataset Website: https://lhf-labs.github.io/tm-dataset Da

LHF Labs 9 Dec 14, 2022
PyTorch DepthNet Training on Still Box dataset

DepthNet training on Still Box Project page This code can replicate the results of our paper that was published in UAVg-17. If you use this repo in yo

Clément Pinard 115 Nov 21, 2022
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022
Official Repo for Ground-aware Monocular 3D Object Detection for Autonomous Driving

Visual 3D Detection Package: This repo aims to provide flexible and reproducible visual 3D detection on KITTI dataset. We expect scripts starting from

Yuxuan Liu 305 Dec 19, 2022
🐸STT integration examples

🐸 STT 0.9.x Examples These are various examples on how to use or integrate 🐸 STT using our packages. It is a good way to just try out 🐸 STT before

coqui 92 Dec 19, 2022
Learning to Prompt for Vision-Language Models.

CoOp Paper: Learning to Prompt for Vision-Language Models Authors: Kaiyang Zhou, Jingkang Yang, Chen Change Loy, Ziwei Liu CoOp (Context Optimization)

Kaiyang 679 Jan 04, 2023
Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label.

Tensorflow-Mobile-Generic-Object-Localizer Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label. Ori

Ibai Gorordo 11 Nov 15, 2022
[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets

[NeurIPS 2021] Well-tuned Simple Nets Excel on Tabular Datasets Introduction This repo contains the source code accompanying the paper: Well-tuned Sim

52 Jan 04, 2023
an implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation using PyTorch

revisiting-sepconv This is a reference implementation of Revisiting Adaptive Convolutions for Video Frame Interpolation [1] using PyTorch. Given two f

Simon Niklaus 59 Dec 22, 2022
Code I use to automatically update my videos' metadata on YouTube

mCodingYouTube This repository contains the code I use to automatically update my videos' metadata on YouTube, including: titles, descriptions, tags,

James Murphy 19 Oct 07, 2022