Welcome to The Eigensolver Quantum School, a quantum computing crash course designed by students for students.

Related tags

Deep LearningTEQS
Overview

TEQS

Welcome to The Eigensolver Quantum School, a crash course designed by students for students. The aim of this program is to take someone who has no QC knowledge and put through a five day crash course that puts them in the frame of mind necessary to learn via formal texts such as Nielsen and Chuang (which is the prize of our two day hackathon!)

TEQS Prerequisites

One of the beauties behind learning quantum computing is that on an elementary level, very few pre-requisites are required. At TEQS, the course is designed in a way where the only pre-requisites required are basic linear algebra and classical information processing. To ensure that everyone has those under their belts before attending the crash course, we made those three notebooks which we encourage everyone to read and solve the exercises.

  • Chapter 1 is on vectors and how they are used to represent the state of a qubit
  • Chapter 2 is on operators and how they are used to manipulate the state of a qubit
  • Chapter 3 is on Classical Information and Boolean Logic

Module Requirements

Lectures

Day 1:

Overview of mathematical prerequisites, brief introduction to quantum states and operators, and classical computing. Content available here.

Day 2:

Reduced quantum postulates from a quantum computing perspective and introduction to basic quantum circuits and simulators using Qiskit. Content available here.

Day 3:

The no-cloning theorem, quantum teleportation protocol, superdense coding, and BB84 cryptographic protocol. Content available here.

Day 4:

Quantum oracles, Deutsch's algorithm and how to construct a quantum circuit that implements them. Content available here.

Day 5:

IBM Quantum Fun Day! Introduction to RasQberry and Question and Answer Panel. Content available here.

Hackathon!

Welcome to the Eigensolvers Quantum School Hackathon! In the notebook found in this folder there are 4 problems covering all the material covered in the lectures. These problems have been designed for people coming from all different levels of experience in quantum computing. You will get a different certificate level based on the problems you completed:

  • First two: Beginner
  • First three: Intermediate
  • All four: Advanced

There are also prizes for the winners of the hackathon:

  • First Place: RasQberry - Premium
  • Second Place: RasQberry - All Inclusive
  • Third Place: RasQberry - Customizable DIY Kit
  • Fourth Place: Nielsen and Chuang

The ranking will be based on the weighted cost of the solutions for problem 3 and problem 4; as defined in the notebook.

To submit your solutions, fill out the form below, with the code that you write for each problem. https://forms.gle/KkA6gBbhrCZpWgnX8

The deadline for submission is Sunday (July 11th) 7pm Indian Standard Time. Remember, the ultimate goal is to have fun and learn some quantum computing while you're at it. All the best!

Owner
The Eigensolvers
The Eigensolvers
Implementation of Hierarchical Transformer Memory (HTM) for Pytorch

Hierarchical Transformer Memory (HTM) - Pytorch Implementation of Hierarchical Transformer Memory (HTM) for Pytorch. This Deepmind paper proposes a si

Phil Wang 63 Dec 29, 2022
EZ graph is an easy to use AI solution that allows you to make and train your neural networks without a single line of code.

EZ-Graph EZ Graph is a GUI that allows users to make and train neural networks without writing a single line of code. Requirements python 3 pandas num

1 Jul 03, 2022
Unadversarial Examples: Designing Objects for Robust Vision

Unadversarial Examples: Designing Objects for Robust Vision This repository contains the code necessary to replicate the major results of our paper: U

Microsoft 93 Nov 28, 2022
Simulation of the solar system using various nummerical methods

solar-system Simulation of the solar system using various nummerical methods Download the repo Make shure matplotlib, scipy etc. are installed execute

Caspar 7 Jul 15, 2022
Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation

Image-based Navigation in Real-World Environments via Multiple Mid-level Representations: Fusion Models Benchmark and Efficient Evaluation This reposi

First Person Vision @ Image Processing Laboratory - University of Catania 1 Aug 21, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction

JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction CSCI 544 Final Project done by: Mohammed Alsayed, Shaayan Syed, Mohammad Alali, S

Smit Patel 3 Dec 28, 2022
Re-implememtation of MAE (Masked Autoencoders Are Scalable Vision Learners) using PyTorch.

mae-repo PyTorch re-implememtation of "masked autoencoders are scalable vision learners". In this repo, it heavily borrows codes from codebase https:/

Peng Qiao 1 Dec 14, 2021
TensorLight - A high-level framework for TensorFlow

TensorLight is a high-level framework for TensorFlow-based machine intelligence applications. It reduces boilerplate code and enables advanced feature

Benjamin Kan 10 Jul 31, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

248 Dec 04, 2022
Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline

vqvae_dwt_distiller.pytorch Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline. It allows to generate 512x512 ima

Sergei Belousov 25 Jul 19, 2022
Unsupervised Image to Image Translation with Generative Adversarial Networks

Unsupervised Image to Image Translation with Generative Adversarial Networks Paper: Unsupervised Image to Image Translation with Generative Adversaria

Hao 71 Oct 30, 2022
Code for STFT Transformer used in BirdCLEF 2021 competition.

STFT_Transformer Code for STFT Transformer used in BirdCLEF 2021 competition. The STFT Transformer is a new way to use Transformers similar to Vision

Jean-François Puget 69 Sep 29, 2022
Wide Residual Networks (WideResNets) in PyTorch

Wide Residual Networks (WideResNets) in PyTorch WideResNets for CIFAR10/100 implemented in PyTorch. This implementation requires less GPU memory than

Jason Kuen 296 Dec 27, 2022
Progressive Domain Adaptation for Object Detection

Progressive Domain Adaptation for Object Detection Implementation of our paper Progressive Domain Adaptation for Object Detection, based on pytorch-fa

96 Nov 25, 2022
Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings

Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings Results on STS Tasks Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg. unsup-prompt-be

196 Jan 08, 2023
Official PyTorch implementation of "ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows"

ArtFlow Official PyTorch implementation of the paper: ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows Jie An*, Siyu Huang*, Yibing

123 Dec 27, 2022
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
Toontown House CT Edition

Toontown House: Classic Toontown House Classic source that should just work. ❓ W

Open Source Toontown Servers 5 Jan 09, 2022
Residual Pathway Priors for Soft Equivariance Constraints

Residual Pathway Priors for Soft Equivariance Constraints This repo contains the implementation and the experiments for the paper Residual Pathway Pri

Marc Finzi 13 Oct 12, 2022