An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

Related tags

Deep Learningbassl
Overview

KakaoBrain pytorch pytorch-lightning

BaSSL

This is an official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL) [arxiv]

  • The method is a self-supervised learning algorithm that learns a model to capture contextual transition across boundaries during the pre-training stage. To be specific, the method leverages pseudo-boundaries and proposes three novel boundary-aware pretext tasks effective in maximizing intra-scene similarity and minimizing inter-scene similarity, thus leading to higher performance in video scene segmentation task.

1. Environmental Setup

We have tested the implementation on the following environment:

  • Python 3.7.7 / PyTorch 1.7.1 / torchvision 0.8.2 / CUDA 11.0 / Ubuntu 18.04

Also, the code is based on pytorch-lightning (==1.3.8) and all necessary dependencies can be installed by running following command.

$ pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
$ pip install -r requirements.txt

# (optional) following installation of pillow-simd sometimes brings faster data loading.
$ pip uninstall pillow && CC="cc -mavx2" pip install -U --force-reinstall pillow-simd

2. Prepare Data

We provide data download script for raw key-frames of MovieNet-SSeg dataset, and our re-formatted annotation files applicable for BaSSL. FYI, our script will automatically download and decompress data---1) key-frames (160G), 2) annotations (200M)---into /bassl/data/movienet .

# download movienet data
$ cd <path-to-root>
$ bash script/download_movienet_data.sh
# 
   
    /bassl/data
   
movienet
│─ 240P_frames
│    │─ tt0120885                 # movie id (or video id)
│    │    │─ shot_0000_img_0.jpg
│    │    │─ shot_0000_img_1.jpg
│    │    │─ shot_0000_img_2.jpg  # for each shot, three key-frames are given.
|    |    ::    │─ shot_1256_img_2.jpg
│    |    
│    │─ tt1093906
│         │─ shot_0000_img_0.jpg
│         │─ shot_0000_img_1.jpg
│         │─ shot_0000_img_2.jpg
|         :
│         │─ shot_1270_img_2.jpg
│
│─anno
     │─ anno.pretrain.ndjson
     │─ anno.trainvaltest.ndjson
     │─ anno.train.ndjson
     │─ anno.val.ndjson
     │─ anno.test.ndjson
     │─ vid2idx.json

3. Train (Pre-training and Fine-tuning)

We use Hydra to provide flexible training configurations. Below examples explain how to modify each training parameter for your use cases.
We assume that you are in (i.e., root of this repository).

3.1. Pre-training

(1) Pre-training BaSSL
Our pre-training is based on distributed environment (multi-GPUs training) using ddp environment supported by pytorch-lightning.
The default setting requires 8-GPUs (of V100) with a batch of 256. However, you can set the parameter config.DISTRIBUTED.NUM_PROC_PER_NODE to the number of gpus you can use or change config.TRAIN.BATCH_SIZE.effective_batch_size. You can run a single command cd bassl; bash ../scripts/run_pretrain_bassl.sh or following full command:

cd <path-to-root>/bassl
EXPR_NAME=bassl
WORK_DIR=$(pwd)
PYTHONPATH=${WORK_DIR} python3 ${WORK_DIR}/pretrain/main.py \
    config.EXPR_NAME=${EXPR_NAME} \
    config.DISTRIBUTED.NUM_NODES=1 \
    config.DISTRIBUTED.NUM_PROC_PER_NODE=8 \
    config.TRAIN.BATCH_SIZE.effective_batch_size=256

Note that the checkpoints are automatically saved in bassl/pretrain/ckpt/ and log files (e.g., tensorboard) are saved in `bassl/pretrain/logs/ .

(2) Running with various loss combinations
Each objective can be turned on and off independently.

cd <path-to-root>/bassl
EXPR_NAME=bassl_all_pretext_tasks
WORK_DIR=$(pwd)
PYTHONPATH=${WORK_DIR} python3 ${WORK_DIR}/pretrain/main.py \
    config.EXPR_NAME=${EXPR_NAME} \
    config.LOSS.shot_scene_matching.enabled=true \
    config.LOSS.contextual_group_matching.enabled=true \
    config.LOSS.pseudo_boundary_prediction.enabled=true \
    config.LOSS.masked_shot_modeling.enabled=true

(3) Pre-training shot-level pre-training baselines
Shot-level pre-training methods can be trained by setting config.LOSS.sampling_method.name as one of followings:

  • instance (Simclr_instance), temporal (Simclr_temporal), shotcol (Simclr_NN).
    And, you can choose two more options: bassl (BaSSL), and bassl+shotcol (BaSSL+ShotCoL).
    Below example is for Simclr_NN, i.e., ShotCoL. Choose your favorite option ;)
cd <path-to-root>/bassl
EXPR_NAME=Simclr_NN
WORK_DIR=$(pwd)
PYTHONPATH=${WORK_DIR} python3 ${WORK_DIR}/pretrain/main.py \
    config.EXPR_NAME=${EXPR_NAME} \
    config.LOSS.sampleing_method.name=shotcol \

3.2. Fine-tuning

(1) Simple running a single command to fine-tune pre-trained models
Firstly, download the checkpoints provided in Model Zoo section and move them into bassl/pretrain/ckpt.

cd <path-to-root>/bassl

# for fine-tuning BaSSL (10 epoch)
bash ../scripts/finetune_bassl.sh

# for fine-tuning Simclr_NN (i.e., ShotCoL)
bash ../scripts/finetune_shot-level_baseline.sh

The full process (i.e., extraction of shot-level representation followed by fine-tuning) is described in below.

(2) Extracting shot-level features from shot key-frames
For computational efficiency, we pre-extract shot-level representation and then fine-tune pre-trained models.
Set LOAD_FROM to EXPR_NAME used in the pre-training stage and change config.DISTRIBUTED.NUM_PROC_PER_NODE as the number of GPUs you can use. Then, the extracted shot-level features are saved in /bassl/data/movienet/features/ .

cd <path-to-root>/bassl
LOAD_FROM=bassl
WORK_DIR=$(pwd)
PYTHONPATH=${WORK_DIR} python3 ${WORK_DIR}/pretrain/extract_shot_repr.py \
	config.DISTRIBUTED.NUM_NODES=1 \
	config.DISTRIBUTED.NUM_PROC_PER_NODE=1 \
	+config.LOAD_FROM=${LOAD_FROM}

(3) Fine-tuning and evaluation

cd <path-to-root>/bassl
WORK_DIR=$(pwd)

# Pre-training methods: bassl and bassl+shotcol
# which learn CRN network during the pre-training stage
LOAD_FROM=bassl
EXPR_NAME=transfer_finetune_${LOAD_FROM}
PYTHONPATH=${WORK_DIR} python3 ${WORK_DIR}/finetune/main.py \
	config.TRAIN.BATCH_SIZE.effective_batch_size=1024 \
	config.EXPR_NAME=${EXPR_NAME} \
	config.DISTRIBUTED.NUM_NODES=1 \
	config.DISTRIBUTED.NUM_PROC_PER_NODE=1 \
	config.TRAIN.OPTIMIZER.lr.base_lr=0.0000025 \
	+config.PRETRAINED_LOAD_FROM=${LOAD_FROM}

# Pre-training methods: instance, temporal, shotcol
# which DO NOT learn CRN network during the pre-training stage
# thus, we use different base learning rate (determined after hyperparameter search)
LOAD_FROM=shotcol_pretrain
EXPR_NAME=finetune_scratch_${LOAD_FROM}
PYTHONPATH=${WORK_DIR} python3 ${WORK_DIR}/finetune/main.py \
	config.TRAIN.BATCH_SIZE.effective_batch_size=1024 \
	config.EXPR_NAME=${EXPR_NAME} \
	config.DISTRIBUTED.NUM_NODES=1 \
	config.DISTRIBUTED.NUM_PROC_PER_NODE=1 \
	config.TRAIN.OPTIMIZER.lr.base_lr=0.000025 \
	+config.PRETRAINED_LOAD_FROM=${LOAD_FROM}

4. Model Zoo

We provide pre-trained checkpoints trained in a self-supervised manner.
After fine-tuning with the checkpoints, the models will give scroes that are almost similar to ones shown below.

Method AP Checkpoint (pre-trained)
SimCLR (instance) 51.51 download
SimCLR (temporal) 50.05 download
SimCLR (NN) 51.17 download
BaSSL (10 epoch) 56.26 download
BaSSL (40 epoch) 57.40 download

5. Citation

If you find this code helpful for your research, please cite our paper.

@article{mun2022boundary,
  title={Boundary-aware Self-supervised Learning for Video Scene Segmentation},
  author={Mun, Jonghwan and Shin, Minchul and Han, Gunsu and
          Lee, Sangho and Ha, Sungsu and Lee, Joonseok and Kim, Eun-sol},
  journal={arXiv preprint arXiv:2201.05277},
  year={2022}
}

6. Contact for Issues

Jonghwan Mun, [email protected]
Minchul Shin, [email protected]

7. License

This project is licensed under the terms of the Apache License 2.0. Copyright 2021 Kakao Brain Corp. All Rights Reserved.

Owner
Kakao Brain
Kakao Brain Corp.
Kakao Brain
Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training Code for our paper "Predicting lncRNA–protein interactio

zhanglabNKU 1 Nov 29, 2022
Bootstrapped Representation Learning on Graphs

Bootstrapped Representation Learning on Graphs This is the PyTorch implementation of BGRL Bootstrapped Representation Learning on Graphs The main scri

NerDS Lab :: Neural Data Science Lab 55 Jan 07, 2023
Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)

On the Generative Utility of Cyclic Conditionals This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals"

Chang Liu 44 Nov 16, 2022
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
PyTorch Implementation of Backbone of PicoDet

PicoDet-Backbone PyTorch Implementation of Backbone of PicoDet Original Implementation is implemented on PaddlePaddle. Example picodet_l_backbone = ES

Yonghye Kwon 7 Jul 12, 2022
Aalto-cs-msc-theses - Listing of M.Sc. Theses of the Department of Computer Science at Aalto University

Aalto-CS-MSc-Theses Listing of M.Sc. Theses of the Department of Computer Scienc

Jorma Laaksonen 3 Jan 27, 2022
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

0 Nov 13, 2021
Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows.

Swin-Transformer Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows. For more details, ple

旷视天元 MegEngine 9 Mar 14, 2022
Tools for robust generative diffeomorphic slice to volume reconstruction

RGDSVR Tools for Robust Generative Diffeomorphic Slice to Volume Reconstructions (RGDSVR) This repository provides tools to implement the methods in t

Lucilio Cordero-Grande 0 Oct 29, 2021
Source code for the plant extraction workflow introduced in the paper “Agricultural Plant Cataloging and Establishment of a Data Framework from UAV-based Crop Images by Computer Vision”

Plant extraction workflow Source code for the plant extraction workflow introduced in the paper "Agricultural Plant Cataloging and Establishment of a

Maurice Günder 0 Apr 22, 2022
Equivariant Imaging: Learning Beyond the Range Space

[Project] Equivariant Imaging: Learning Beyond the Range Space Project about the

Georges Le Bellier 3 Feb 06, 2022
Full Stack Deep Learning Labs

Full Stack Deep Learning Labs Welcome! Project developed during lab sessions of the Full Stack Deep Learning Bootcamp. We will build a handwriting rec

Full Stack Deep Learning 1.2k Dec 31, 2022
Robust and Accurate Object Detection via Self-Knowledge Distillation

Robust and Accurate Object Detection via Self-Knowledge Distillation paper:https://arxiv.org/abs/2111.07239 Environments Python 3.7 Cuda 10.1 Prepare

Weipeng Xu 6 Jul 01, 2022
Predict and time series avocado hass

RECOMMENDER SYSTEM MARKETING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU 1. Giới thiệu - Tiki là một hệ sinh thái thương mại "all in one", trong đó có tiki.vn, là

hieulmsc 3 Jan 10, 2022
Simple node deletion tool for onnx.

snd4onnx Simple node deletion tool for onnx. I only test very miscellaneous and limited patterns as a hobby. There are probably a large number of bugs

Katsuya Hyodo 6 May 15, 2022
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
Sparse-dense operators implementation for Paddle

Sparse-dense operators implementation for Paddle This module implements coo, csc and csr matrix formats and their inter-ops with dense matrices. Feel

北海若 3 Dec 17, 2022
A PyTorch implementation of "Predict then Propagate: Graph Neural Networks meet Personalized PageRank" (ICLR 2019).

APPNP ⠀ A PyTorch implementation of Predict then Propagate: Graph Neural Networks meet Personalized PageRank (ICLR 2019). Abstract Neural message pass

Benedek Rozemberczki 329 Dec 30, 2022
A deep learning object detector framework written in Python for supporting Land Search and Rescue Missions.

AIR: Aerial Inspection RetinaNet for supporting Land Search and Rescue Missions AIR is a deep learning based object detection solution to automate the

Accenture 13 Dec 22, 2022
This repo includes the supplementary of our paper "CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels"

Supplementary Materials for CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels This repository includes all supplementary mater

Zhiwei Li 0 Jan 05, 2022