ServiceX Transformer that converts flat ROOT ntuples into columnwise data

Related tags

Deep Learningssl-hep
Overview

ServiceX_Uproot_Transformer

Badge

ServiceX Transformer that converts flat ROOT ntuples into columnwise data

Usage

You can invoke the transformer from the command line. For example:

> docker run --rm -it sslhep/servicex_func_adl_uproot_transformer:latest python transformer.py --help
usage: transformer.py [-h] [--brokerlist BROKERLIST] [--topic TOPIC]
                      [--chunks CHUNKS] [--tree TREE] [--attrs ATTR_NAMES]
                      [--path PATH] [--limit LIMIT]
                      [--result-destination {kafka,object-store,output-dir}]
                      [--output-dir OUTPUT_DIR]
                      [--result-format {arrow,parquet,root-file}]
                      [--max-message-size MAX_MESSAGE_SIZE]
                      [--rabbit-uri RABBIT_URI] [--request-id REQUEST_ID]

Uproot Transformer

optional arguments:
  -h, --help            show this help message and exit
  --brokerlist BROKERLIST
                        List of Kafka broker to connect to
  --topic TOPIC         Kafka topic to publish arrays to
  --chunks CHUNKS       Arrow Buffer Chunksize
  --tree TREE           Tree from which columns will be inspected
  --attrs ATTR_NAMES    List of attributes to extract
  --path PATH           Path to single Root file to transform
  --limit LIMIT         Max number of events to process
  --result-destination {kafka,object-store,output-dir}
                        kafka, object-store
  --output-dir OUTPUT_DIR
                        Local directory to output results
  --result-format {arrow,parquet,root-file}
                        arrow, parquet, root-file
  --max-message-size MAX_MESSAGE_SIZE
                        Max message size in megabytes
  --rabbit-uri RABBIT_URI
  --request-id REQUEST_ID
                        Request ID to read from queue

You will need an X509 proxy available as a mountable volume. The X509 Secret container can do using your credentials and cert:

docker run --rm \
    --mount type=bind,source=$HOME/.globus,readonly,target=/etc/grid-certs \
    --mount type=bind,source="$(pwd)"/secrets/secrets.txt,target=/servicex/secrets.txt \
    --mount type=volume,source=x509,target=/etc/grid-security \
    --name=x509-secrets sslhep/x509-secrets:latest

Development

 python3 -m pip install -r requirements.txt
 python3 -m pip install --index-url https://test.pypi.org/simple/ --no-deps servicex
Owner
Vis
Developer, Network Engineer, Copy Paste Expert. Mostly working on sort of defined networks (SDN). I pick the packets up and put them down
Vis
[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs

Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin

Deepak Pathak 829 Dec 31, 2022
Energy consumption estimation utilities for Jetson-based platforms

This repository contains a utility for measuring energy consumption when running various programs in NVIDIA Jetson-based platforms. Currently TX-2, NX, and AGX are supported.

OpenDR 10 Jun 17, 2022
Learning Super-Features for Image Retrieval

Learning Super-Features for Image Retrieval This repository contains the code for running our FIRe model presented in our ICLR'22 paper: @inproceeding

NAVER 101 Dec 28, 2022
Bringing Characters to Life with Computer Brains in Unity

AI4Animation: Deep Learning for Character Control This project explores the opportunities of deep learning for character animation and control as part

Sebastian Starke 5.5k Jan 04, 2023
Human Detection - Pedestrian Detection using OpenCV Python

Pedestrian Detection using OpenCV Python Follow us on Instagram for Machine Lear

Hrishikesh Dutta 1 Jan 23, 2022
Code for the AI lab course 2021/2022 of the University of Verona

AI-Lab Code for the AI lab course 2021/2022 of the University of Verona Set-Up the environment for the curse Download Anaconda for your System. Instal

Davide Corsi 5 Oct 19, 2022
Package for working with hypernetworks in PyTorch.

Package for working with hypernetworks in PyTorch.

Christian Henning 71 Jan 05, 2023
The Empirical Investigation of Representation Learning for Imitation (EIRLI)

The Empirical Investigation of Representation Learning for Imitation (EIRLI)

Center for Human-Compatible AI 31 Nov 06, 2022
USAD - UnSupervised Anomaly Detection on multivariate time series

USAD - UnSupervised Anomaly Detection on multivariate time series Scripts and utility programs for implementing the USAD architecture. Implementation

116 Jan 04, 2023
7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

kaggle-hpa-2021-7th-place-solution Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle. A description of the met

8 Jul 09, 2021
An introduction to bioimage analysis - http://bioimagebook.github.io

Introduction to Bioimage Analysis This book tries explain the main ideas of image analysis in a practical and engaging way. It's written primarily for

Bioimage Book 20 Nov 28, 2022
Sequence lineage information extracted from RKI sequence data repo

Pango lineage information for German SARS-CoV-2 sequences This repository contains a join of the metadata and pango lineage tables of all German SARS-

Cornelius Roemer 24 Oct 26, 2022
Learning nonlinear operators via DeepONet

DeepONet: Learning nonlinear operators The source code for the paper Learning nonlinear operators via DeepONet based on the universal approximation th

Lu Lu 239 Jan 02, 2023
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
Simultaneous Demand Prediction and Planning

Simultaneous Demand Prediction and Planning Dependencies Python packages: Pytorch, scikit-learn, Pandas, Numpy, PyYAML Data POI: data/poi Road network

Yizong Wang 1 Sep 01, 2022
Local trajectory planner based on a multilayer graph framework for autonomous race vehicles.

Graph-Based Local Trajectory Planner The graph-based local trajectory planner is python-based and comes with open interfaces as well as debug, visuali

TUM - Institute of Automotive Technology 160 Jan 04, 2023
A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction.

Graph2SMILES A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction. 1. Environmental setup System requirements Ubuntu:

29 Nov 18, 2022
Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.

Stock Price Prediction Using Deep Learning Univariate Time Series Predicting stock price using historical data of a company using Neural networks for

Abdultawwab Safarji 7 Nov 27, 2022
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

5 Nov 03, 2022