Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Overview

Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Supplementary Materials for Kentaro Matsuura, Junya Honda, Imad El Hanafi, Takashi Sozu, Kentaro Sakamaki "Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study" Statistics in Medicine 202x; (doi:xxxxx)

How to Setup

We recommend using Linux or WSL on Windows, because the Ray package in Python is more stable on Linux. For example, in Ubuntu 20.04 (Python 3.8 was already installed), I was able to install the necessary packages with the following commands.

Install Ray

sudo apt update
sudo apt upgrade
sudo apt install python3-pip
sudo pip3 install tensorflow numpy pandas gym
sudo apt install cmake
sudo pip3 install -U ray
sudo pip3 install 'ray[rllib]'

Install R and RPy2

echo -e "\n## For R package"  | sudo tee -a /etc/apt/sources.list
echo "deb https://cloud.r-project.org/bin/linux/ubuntu $(lsb_release -cs)-cran40/" | sudo tee -a /etc/apt/sources.list
sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys E298A3A825C0D65DFD57CBB651716619E084DAB9
sudo apt update
sudo apt install make g++ r-base
sudo apt install libxml2-dev libssl-dev libcurl4-openssl-dev
sudo pip3 install rpy2

Install DoseFinding package in R

install.packages('DoseFinding')

How to Use

Change simulation settings

To change the simulation settings, it is necessary to understand MCPMod/envs/MCPModEnv.py. This part is a bit difficult because of the interaction between R and Python. Therefore, we have a plan to create an R package to use our method easily.

Obtain adaptive allocation rule

To obtain RL-MAE by learning, please run learn_RL-MAE.py like:

nohup python3 learn_RL-MAE.py > std.log 2> err.log &

To obtain other RL-methods, please change the reward_type in line 25 in learn_RL-MAE.py to something like score_TD, then run the modified file.

When we used c2-standard-4(vCPUx4, RAM16GB) on Google Cloud Platform, the learning was completed within a day.

Simulate single trial

After the learning, we will obtain a checkpoint in ~/ray_results/PPO_MCPMod-v0_[datetime]-[xxx]/checkpoint-[yyy]/. To simulate single trial using the obtained rule, please move the checkpoint files (checkpoint and checkpoint.tune_metadata) in the directory to checkpoint/ in this repository, and rename the files as you like (see the example files). Then, please run simulate-single-trial_RL-MAE.py like:

python3 simulate-single-trial_RL-MAE.py
Owner
Kentaro Matsuura
Kentaro Matsuura
3D-printable hand-strapped keyboard

Note: This repo has not been cleaned up and prepared for general consumption at all. This is just a dump of the project files. If there is any interes

Wojciech Baranowski 41 Dec 31, 2022
Which Style Makes Me Attractive? Interpretable Control Discovery and Counterfactual Explanation on StyleGAN

Interpretable Control Exploration and Counterfactual Explanation (ICE) on StyleGAN Which Style Makes Me Attractive? Interpretable Control Discovery an

Bo Li 11 Dec 01, 2022
Multivariate Time Series Transformer, public version

Multivariate Time Series Transformer Framework This code corresponds to the paper: George Zerveas et al. A Transformer-based Framework for Multivariat

363 Jan 03, 2023
One line to host them all. Bootstrap your image search case in minutes.

One line to host them all. Bootstrap your image search case in minutes. Survey NOW gives the world access to customized neural image search in just on

Jina AI 403 Dec 30, 2022
MAterial del programa Misión TIC 2022

Mision TIC 2022 Esta iniciativa, aparece como respuesta frente a los retos de la Cuarta Revolución Industrial, y tiene como objetivo la formación de 1

6 May 25, 2022
Portfolio analytics for quants, written in Python

QuantStats: Portfolio analytics for quants QuantStats Python library that performs portfolio profiling, allowing quants and portfolio managers to unde

Ran Aroussi 2.7k Jan 08, 2023
Rule based classification A hotel s customers dataset

Rule-based-classification-A-hotel-s-customers-dataset- Aim: Categorize new customers by segment and predict how much revenue they can generate This re

Şebnem 4 Jan 02, 2022
This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

This Repostory contains the pretrained DTLN-aec model for real-time acoustic echo cancellation.

Nils L. Westhausen 182 Jan 07, 2023
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 02, 2023
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Text-AutoAugment (TAA) This repository contains the code for our paper Text AutoAugment: Learning Compositional Augmentation Policy for Text Classific

LancoPKU 105 Jan 03, 2023
This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation).

FlatGCN This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation, submitted to ICASSP2022). Req

Dreamer 2 Aug 09, 2022
HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022 [Project page | Video] Getting sta

51 Nov 29, 2022
Official Implementation of PCT

Official Implementation of PCT Prerequisites python == 3.8.5 Please make sure you have the following libraries installed: numpy torch=1.4.0 torchvisi

32 Nov 21, 2022
Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Yihui He 1k Jan 03, 2023
Optimize Trading Strategies Using Freqtrade

Optimize trading strategy using Freqtrade Short demo on building, testing and optimizing a trading strategy using Freqtrade. The DevBootstrap YouTube

DevBootstrap 139 Jan 01, 2023
Fast methods to work with hydro- and topography data in pure Python.

PyFlwDir Intro PyFlwDir contains a series of methods to work with gridded DEM and flow direction datasets, which are key to many workflows in many ear

Deltares 27 Dec 07, 2022
Evolution Strategies in PyTorch

Evolution Strategies This is a PyTorch implementation of Evolution Strategies. Requirements Python 3.5, PyTorch = 0.2.0, numpy, gym, universe, cv2 Wh

Andrew Gambardella 333 Nov 14, 2022
Discord bot for notifying on github events

Git-Observer Discord bot for notifying on github events ⚠️ This bot is meant to write messages to only one channel (implementing this for multiple pro

ilu_vatar_ 0 Apr 19, 2022
Fast and Simple Neural Vocoder, the Multiband RNNMS

Multiband RNN_MS Fast and Simple vocoder, Multiband RNN_MS. Demo Quick training How to Use System Details Results References Demo ToDO: Link super gre

tarepan 5 Jan 11, 2022