Official implement of Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer

Overview

Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer

This repository contains the PyTorch code for Evo-ViT.

This work proposes a slow-fast token evolution approach to accelerate vanilla vision transformers of both flat and deep-narrow structures without additional pre-training and fine-tuning procedures. For details please see Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer by Yifan Xu*, Zhijie Zhang*, Mengdan Zhang, Kekai Sheng, Ke Li, Weiming Dong, Liqing Zhang, Changsheng Xu, and Xing Sun. intro

Our code is based on pytorch-image-models, DeiT, and LeViT.

Preparation

Download and extract ImageNet train and val images from http://image-net.org/. The directory structure is the standard layout for the torchvision datasets.ImageFolder, and the training and validation data is expected to be in the train/ folder and val folder respectively.

/path/to/imagenet/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  val/
    class1/
      img3.jpeg
    class/2
      img4.jpeg

All distillation settings are conducted with a teacher model RegNetY-160, which is available at teacher checkpoint.

Install the requirements by running:

pip3 install -r requirements.txt

NOTE that all experiments in the paper are conducted under cuda11.0. If necessary, please install the following packages under the environment with CUDA version 11.0: torch1.7.0-cu110, torchvision-0.8.1-cu110.

Model Zoo

We provide our Evo-ViT models pretrained on ImageNet:

Name Top-1 Acc (%) Throughput (img/s) Url
Evo-ViT-T 72.0 4027 Google Drive
Evo-ViT-S 79.4 1510 Google Drive
Evo-ViT-B 81.3 462 Google Drive
Evo-LeViT-128S 73.0 10135 Google Drive
Evo-LeViT-128 74.4 8323 Google Drive
Evo-LeViT-192 76.8 6148 Google Drive
Evo-LeViT-256 78.8 4277 Google Drive
Evo-LeViT-384 80.7 2412 Google Drive
Evo-ViT-B* 82.0 139 Google Drive
Evo-LeViT-256* 81.1 1285 Google Drive
Evo-LeViT-384* 82.2 712 Google Drive

The input image resolution is 224 × 224 unless specified. * denotes the input image resolution is 384 × 384.

Usage

Evaluation

To evaluate a pre-trained model, run:

python3 main_deit.py --model evo_deit_small_patch16_224 --eval --resume /path/to/checkpoint.pth --batch-size 256 --data-path /path/to/imagenet

Training with input resolution of 224

To train Evo-ViT on ImageNet on a single node with 8 gpus for 300 epochs, run:

Evo-ViT-T

python3 -m torch.distributed.launch --nproc_per_node=8 --use_env main_deit.py --model evo_deit_tiny_patch16_224 --drop-path 0 --batch-size 256 --data-path /path/to/imagenet --output_dir /path/to/save

Evo-ViT-S

python3 -m torch.distributed.launch --nproc_per_node=8 --use_env main_deit.py --model evo_deit_small_patch16_224 --batch-size 128 --data-path /path/to/imagenet --output_dir /path/to/save

Sometimes loss Nan happens in the early training epochs of DeiT-B, which is described in this issue. Our solution is to reduce the batch size to 128, load a warmup checkpoint trained for 9 epochs, and train Evo-ViT for the remaining 291 epochs. To train Evo-ViT-B on ImageNet on a single node with 8 gpus for 300 epochs, run:

python3 -m torch.distributed.launch --nproc_per_node=8 --use_env main_deit.py --model evo_deit_base_patch16_224 --batch-size 128 --data-path /path/to/imagenet --output_dir /path/to/save --resume /path/to/warmup_checkpoint.pth

To train Evo-LeViT-128 on ImageNet on a single node with 8 gpus for 300 epochs, run:

python3 -m torch.distributed.launch --nproc_per_node=8 --use_env main_levit.py --model EvoLeViT_128 --batch-size 256 --data-path /path/to/imagenet --output_dir /path/to/save

The other models of Evo-LeViT are trained with the same command as mentioned above.

Training with input resolution of 384

To train Evo-ViT-B* on ImageNet on 2 nodes with 8 gpus each for 300 epochs, run:

python3 -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NODE_SIZE  --node_rank=$NODE_RANK --master_port=$MASTER_PORT --master_addr=$MASTER_ADDR main_deit.py --model evo_deit_base_patch16_384 --input-size 384 --batch-size 64 --data-path /path/to/imagenet --output_dir /path/to/save

To train Evo-ViT-S* on ImageNet on a single node with 8 gpus for 300 epochs, run:

python3 -m torch.distributed.launch --nproc_per_node=8 --use_env main_deit.py --model evo_deit_small_patch16_384 --batch-size 128 --input-size 384 --data-path /path/to/imagenet --output_dir /path/to/save"

To train Evo-LeViT-384* on ImageNet on a single node with 8 gpus for 300 epochs, run:

python3 -m torch.distributed.launch --nproc_per_node=8 --use_env main_levit.py --model EvoLeViT_384_384 --input-size 384 --batch-size 128 --data-path /path/to/imagenet --output_dir /path/to/save

The other models of Evo-LeViT* are trained with the same command of Evo-LeViT-384*.

Testing inference throughput

To test inference throughput, first modify the model name in line 153 of benchmark.py. Then, run:

python3 benchmark.py

The defauld input resolution is 224. To test inference throughput with input resolution of 384, please add the parameter "--img_size 384"

Visualization of token selection

The visualization code is modified from DynamicViT.

To visualize a batch of ImageNet val images, run:

python3 visualize.py --model evo_deit_small_vis_patch16_224 --resume /path/to/checkpoint.pth --output_dir /path/to/save --data-path /path/to/imagenet --batch-size 64 

To visualize a single image, run:

python3 visualize.py --model evo_deit_small_vis_patch16_224 --resume /path/to/checkpoint.pth --output_dir /path/to/save --img-path ./imgs/a.jpg --save-name evo_test

Add parameter '--layer-wise-prune' if the visualized model is not trained with layer-to-stage training strategy.

The visualization results of Evo-ViT-S are as follows:

result

Citation

If you find our work useful in your research, please consider citing:

@article{xu2021evo,
  title={Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer},
  author={Xu, Yifan and Zhang, Zhijie and Zhang, Mengdan and Sheng, Kekai and Li, Ke and Dong, Weiming and Zhang, Liqing and Xu, Changsheng and Sun, Xing},
  journal={arXiv preprint arXiv:2108.01390},
  year={2021}
}
Owner
YifanXu
But gold will glitter forever.
YifanXu
SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

SpeechNAS Better Trade off between Latency and Accuracy for Large Scale Speaker Verification

Wentao Zhu 24 May 20, 2022
Open source implementation of "A Self-Supervised Descriptor for Image Copy Detection" (SSCD).

A Self-Supervised Descriptor for Image Copy Detection (SSCD) This is the open-source codebase for "A Self-Supervised Descriptor for Image Copy Detecti

Meta Research 68 Jan 04, 2023
Face and other object detection using OpenCV and ML Yolo

Object-and-Face-Detection-Using-Yolo- Opencv and YOLO object and face detection is implemented. You only look once (YOLO) is a state-of-the-art, real-

Happy N. Monday 3 Feb 15, 2022
This repository contains the code used to quantitatively evaluate counterfactual examples in the associated paper.

On Quantitative Evaluations of Counterfactuals Install To install required packages with conda, run the following command: conda env create -f requi

Frederik Hvilshøj 1 Jan 16, 2022
Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Yaoming Cai 5 Jul 18, 2022
This code is an unofficial implementation of HiFiSinger.

HiFiSinger This code is an unofficial implementation of HiFiSinger. The algorithm is based on the following papers: Chen, J., Tan, X., Luan, J., Qin,

Heejo You 87 Dec 23, 2022
Artifacts for paper "MMO: Meta Multi-Objectivization for Software Configuration Tuning"

MMO: Meta Multi-Objectivization for Software Configuration Tuning This repository contains the data and code for the following paper that is currently

0 Nov 17, 2021
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
Meta Learning Backpropagation And Improving It (VSML)

Meta Learning Backpropagation And Improving It (VSML) This is research code for the NeurIPS 2021 publication Kirsch & Schmidhuber 2021. Many concepts

Louis Kirsch 22 Dec 21, 2022
Tightness-aware Evaluation Protocol for Scene Text Detection

TIoU-metric Release on 27/03/2019. This repository is built on the ICDAR 2015 evaluation code. If you propose a better metric and require further eval

Yuliang Liu 206 Nov 18, 2022
Implementation for paper LadderNet: Multi-path networks based on U-Net for medical image segmentation

Implementation for paper LadderNet: Multi-path networks based on U-Net for medical image segmentation This implementation is based on orobix implement

Juntang Zhuang 116 Sep 06, 2022
Code for NeurIPS 2021 paper: Invariant Causal Imitation Learning for Generalizable Policies

Invariant Causal Imitation Learning for Generalizable Policies Ioana Bica, Daniel Jarrett, Mihaela van der Schaar Neural Information Processing System

Ioana Bica 17 Dec 01, 2022
An end-to-end machine learning web app to predict rugby scores (Pandas, SQLite, Keras, Flask, Docker)

Rugby score prediction An end-to-end machine learning web app to predict rugby scores Overview An demo project to provide a high-level overview of the

34 May 24, 2022
Source code for Transformer-based Multi-task Learning for Disaster Tweet Categorisation (UCD's participation in TREC-IS 2020A, 2020B and 2021A).

Source code for "UCD participation in TREC-IS 2020A, 2020B and 2021A". *** update at: 2021/05/25 This repo so far relates to the following work: Trans

Congcong Wang 4 Oct 19, 2021
Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala, S. Krastanov, M. Eichenfield, and D. R. Englund, 2022

Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala,

Stefan Krastanov 1 Jan 17, 2022
Deep Probabilistic Programming Course @ DIKU

Deep Probabilistic Programming Course @ DIKU

52 May 14, 2022
Deep Federated Learning for Autonomous Driving

FADNet: Deep Federated Learning for Autonomous Driving Abstract Autonomous driving is an active research topic in both academia and industry. However,

AIOZ AI 12 Dec 01, 2022
Traffic4D: Single View Reconstruction of Repetitious Activity Using Longitudinal Self-Supervision

Traffic4D: Single View Reconstruction of Repetitious Activity Using Longitudinal Self-Supervision Project | PDF | Poster Fangyu Li, N. Dinesh Reddy, X

25 Dec 21, 2022
You Only Look One-level Feature (YOLOF), CVPR2021, Detectron2

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides a neat implementation

qiang chen 273 Jan 03, 2023
[CVPR 2022 Oral] TubeDETR: Spatio-Temporal Video Grounding with Transformers

TubeDETR: Spatio-Temporal Video Grounding with Transformers Website • STVG Demo • Paper This repository provides the code for our paper. This includes

Antoine Yang 108 Dec 27, 2022