Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch

Overview

CAPE 🌴 pylint pytest

PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!

Setup 🔧

Minimum requirements:

torch >= 1.10.0

Install from source:

git clone https://github.com/gcambara/cape.git
cd cape
pip install --editable ./

Usage 📖

Ready to go along with PyTorch's official implementation of Transformers. Default initialization behaves identically as sinusoidal positional embeddings, summing them up to your content embeddings:

from torch import nn
from cape import CAPE1d

pos_emb = CAPE1d(d_model=512)
transformer = nn.Transformer(d_model=512)

x = torch.randn(10, 32, 512) # seq_len, batch_size, n_feats
x = pos_emb(x) # forward sums the positional embedding by default
x = transformer(x)

Alternatively, you can get positional embeddings separately

x = torch.randn(10, 32, 512)
pos_emb = pos_emb.compute_pos_emb(x)

scale = 512**0.5
x = (scale * x) + pos_emb
x = transformer(x)

Let's see a few examples of CAPE initialization for different modalities, inspired by the original paper experiments.

CAPE for text 🔤

CAPE1d is ready to be applied to text. Keep max_local_shift between 0 and 0.5 to shift local positions without disordering them.

from cape import CAPE1d
pos_emb = CAPE1d(d_model=512, max_global_shift=5.0, 
                 max_local_shift=0.5, max_global_scaling=1.03, 
                 normalize=False)

x = torch.randn(10, 32, 512) # seq_len, batch_size, n_feats
x = pos_emb(x)

Padding is supported by indicating the length of samples in the forward method, with the x_lengths argument. For example, the original length of samples is 7, although they have been padded to sequence length 10.

x = torch.randn(10, 32, 512) # seq_len, batch_size, n_feats
x_lengths = torch.ones(32)*7
x = pos_emb(x, x_lengths=x_lengths)

CAPE for audio 🎙️

CAPE1d for audio is applied similarly to text. Use positions_delta argument to set the separation in seconds between time steps, and x_lengths for indicating sample durations in case there is padding.

For instance, let's consider no padding and same hop size (30 ms) at every sample in the batch:

# Max global shift is 60 s.
# Max local shift is set to 0.5 to maintain positional order.
# Max global scaling is 1.1, according to WSJ recipe.
# Freq scale is 30 to ensure that 30 ms queries are possible with long audios
from cape import CAPE1d
pos_emb = CAPE1d(d_model=512, max_global_shift=60.0, 
                 max_local_shift=0.5, max_global_scaling=1.1, 
                 normalize=True, freq_scale=30.0)

x = torch.randn(100, 32, 512) # seq_len, batch_size, n_feats
positions_delta = 0.03 # 30 ms of stride
x = pos_emb(x, positions_delta=positions_delta)

Now, let's imagine that the original duration of all samples is 2.5 s, although they have been padded to 3.0 s. Hop size is 30 ms for every sample in the batch.

x = torch.randn(100, 32, 512) # seq_len, batch_size, n_feats

duration = 2.5
positions_delta = 0.03
x_lengths = torch.ones(32)*duration
x = pos_emb(x, x_lengths=x_lengths, positions_delta=positions_delta)

What if the hop size is different for every sample in the batch? E.g. first half of the samples have stride of 30 ms, and the second half of 50 ms.

positions_delta = 0.03
positions_delta = torch.ones(32)*positions_delta
positions_delta[16:] = 0.05
x = pos_emb(x, positions_delta=positions_delta)
positions_delta
tensor([0.0300, 0.0300, 0.0300, 0.0300, 0.0300, 0.0300, 0.0300, 0.0300, 0.0300,
        0.0300, 0.0300, 0.0300, 0.0300, 0.0300, 0.0300, 0.0300, 0.0500, 0.0500,
        0.0500, 0.0500, 0.0500, 0.0500, 0.0500, 0.0500, 0.0500, 0.0500, 0.0500,
        0.0500, 0.0500, 0.0500, 0.0500, 0.0500])

Lastly, let's consider a very rare case, where hop size is different for every sample in the batch, and is not constant within some samples. E.g. stride of 30 ms for the first half of samples, and 50 ms for the second half. However, the hop size of the very first sample linearly increases for each time step.

from einops import repeat
positions_delta = 0.03
positions_delta = torch.ones(32)*positions_delta
positions_delta[16:] = 0.05
positions_delta = repeat(positions_delta, 'b -> b new_axis', new_axis=100)
positions_delta[0, :] *= torch.arange(1, 101)
x = pos_emb(x, positions_delta=positions_delta)
positions_delta
tensor([[0.0300, 0.0600, 0.0900,  ..., 2.9400, 2.9700, 3.0000],
        [0.0300, 0.0300, 0.0300,  ..., 0.0300, 0.0300, 0.0300],
        [0.0300, 0.0300, 0.0300,  ..., 0.0300, 0.0300, 0.0300],
        ...,
        [0.0500, 0.0500, 0.0500,  ..., 0.0500, 0.0500, 0.0500],
        [0.0500, 0.0500, 0.0500,  ..., 0.0500, 0.0500, 0.0500],
        [0.0500, 0.0500, 0.0500,  ..., 0.0500, 0.0500, 0.0500]])

CAPE for ViT 🖼️

CAPE2d is used for embedding positions in image patches. Scaling of positions between [-1, 1] is done within the module, whether patches are square or non-square. Thus, set max_local_shift between 0 and 0.5, and the scale of local shifts will be adjusted according to the height and width of patches. Beyond values of 0.5 the order of positions might be altered, do this at your own risk!

from cape import CAPE2d
pos_emb = CAPE2d(d_model=512, max_global_shift=0.5, 
                 max_local_shift=0.5, max_global_scaling=1.4)

# Case 1: square patches
x = torch.randn(16, 16, 32, 512) # height, width, batch_size, n_feats
x = pos_emb(x)

# Case 2: non-square patches
x = torch.randn(24, 16, 32, 512) # height, width, batch_size, n_feats
x = pos_emb(x)

Citation ✍️

I just did this PyTorch implementation following the paper's Python code and the Flashlight recipe in C++. All the credit goes to the original authors, please cite them if you use this for your research project:

@inproceedings{likhomanenko2021cape,
title={{CAPE}: Encoding Relative Positions with Continuous Augmented Positional Embeddings},
author={Tatiana Likhomanenko and Qiantong Xu and Gabriel Synnaeve and Ronan Collobert and Alex Rogozhnikov},
booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
year={2021},
url={https://openreview.net/forum?id=n-FqqWXnWW}
}

Acknowledgments 🙏

Many thanks to the paper's authors for code reviewing and clarifying doubts about the paper and the implementation. :)

You might also like...
Implementation of
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch

Rotary Embeddings - Pytorch A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional

A PyTorch Implementation of
A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).

Attention Walk ⠀⠀ A PyTorch Implementation of Watch Your Step: Learning Node Embeddings via Graph Attention (NIPS 2018). Abstract Graph embedding meth

PyTorch implementation of the NIPS-17 paper
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch

Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo

Styled Augmented Translation
Styled Augmented Translation

SAT Style Augmented Translation Introduction By collecting high-quality data, we were able to train a model that outperforms Google Translate on 6 dif

TANL: Structured Prediction as Translation between Augmented Natural Languages

TANL: Structured Prediction as Translation between Augmented Natural Languages Code for the paper "Structured Prediction as Translation between Augmen

A neuroanatomy-based augmented reality experience powered by computer vision. Features 3D visuals of the Atlas Brain Map slices.

Brain Augmented Reality (AR) A neuroanatomy-based augmented reality experience powered by computer vision that features 3D visuals of the Atlas Brain

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Releases(v1.0.0)
Owner
Guillermo Cámbara
🎙️ PhD Candidate in Self-Supervised Learning + Speech Recognition @ Universitat Pompeu Fabra & Telefónica Research
Guillermo Cámbara
This is the official implementation for the paper "Heterogeneous Multi-player Multi-armed Bandits: Closing the Gap and Generalization" in NeurIPS 2021.

MPMAB_BEACON This is code used for the paper "Decentralized Multi-player Multi-armed Bandits: Beyond Linear Reward Functions", Neurips 2021. Requireme

Cong Shen Research Group 0 Oct 26, 2021
SatelliteSfM - A library for solving the satellite structure from motion problem

Satellite Structure from Motion Maintained by Kai Zhang. Overview This is a libr

Kai Zhang 190 Dec 08, 2022
Just Go with the Flow: Self-Supervised Scene Flow Estimation

Just Go with the Flow: Self-Supervised Scene Flow Estimation Code release for the paper Just Go with the Flow: Self-Supervised Scene Flow Estimation,

Himangi Mittal 50 Nov 22, 2022
Real-time object detection on Android using the YOLO network with TensorFlow

TensorFlow YOLO object detection on Android Source project android-yolo is the first implementation of YOLO for TensorFlow on an Android device. It is

Nataniel Ruiz 624 Jan 03, 2023
Sound Event Detection with FilterAugment

Sound Event Detection with FilterAugment Official implementation of Heavily Augmented Sound Event Detection utilizing Weak Predictions (DCASE2021 Chal

43 Aug 28, 2022
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ Getting started Prerequ

Cambridge Quantum 315 Jan 01, 2023
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation

NVIDIA Research Projects 4.8k Jan 09, 2023
Code for the paper "Asymptotics of ℓ2 Regularized Network Embeddings"

README Code for the paper Asymptotics of L2 Regularized Network Embeddings. Requirements Requires Stellargraph 1.2.1, Tensorflow 2.6.0, scikit-learm 0

Andrew Davison 0 Jan 06, 2022
Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch

PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!

Guillermo Cámbara 26 Dec 13, 2022
A PyTorch version of You Only Look at One-level Feature object detector

PyTorch_YOLOF A PyTorch version of You Only Look at One-level Feature object detector. The input image must be resized to have their shorter side bein

Jianhua Yang 25 Dec 30, 2022
Streamlit component for TensorBoard, TensorFlow's visualization toolkit

streamlit-tensorboard This is a work-in-progress, providing a function to embed TensorBoard, TensorFlow's visualization toolkit, in Streamlit apps. In

Snehan Kekre 27 Nov 13, 2022
A tool to prepare websites grabbed with wget for local viewing.

makelocal A tool to prepare websites grabbed with wget for local viewing. exapmples After fetching xkcd.com with: wget -r -no-remove-listing -r -N --p

5 Apr 23, 2022
Unity Propagation in Bayesian Networks Handling Inconsistency via Unity Smoothing

This repository contains the scripts needed to generate the results from the paper Unity Propagation in Bayesian Networks Handling Inconsistency via U

0 Jan 19, 2022
Matlab Python Heuristic Battery Opt - SMOP conversion and manual conversion

SMOP is Small Matlab and Octave to Python compiler. SMOP translates matlab to py

Tom Xu 1 Jan 12, 2022
Back to Event Basics: SSL of Image Reconstruction for Event Cameras

Back to Event Basics: SSL of Image Reconstruction for Event Cameras Minimal code for Back to Event Basics: Self-Supervised Learning of Image Reconstru

TU Delft 42 Dec 26, 2022
GuideDog is an AI/ML-based mobile app designed to assist the lives of the visually impaired, 100% voice-controlled

Guidedog Authors: Kyuhee Jo, Steven Gunarso, Jacky Wang, Raghav Sharma GuideDog is an AI/ML-based mobile app designed to assist the lives of the visua

Kyuhee Jo 5 Nov 24, 2021
Code for `BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery`, Neurips 2021

This folder contains the code for 'Scalable Variational Approaches for Bayesian Causal Discovery'. Installation To install, use conda with conda env c

14 Sep 21, 2022
High-Resolution 3D Human Digitization from A Single Image.

PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (CVPR 2020) News: [2020/06/15] Demo with Google Colab (i

Meta Research 8.4k Dec 29, 2022
Source code of SIGIR2021 Paper 'One Chatbot Per Person: Creating Personalized Chatbots based on Implicit Profiles'

DHAP Source code of SIGIR2021 Long Paper: One Chatbot Per Person: Creating Personalized Chatbots based on Implicit User Profiles . Preinstallation Fir

ZYMa 32 Dec 06, 2022