CCCL: Contrastive Cascade Graph Learning.

Overview

CCGL: Contrastive Cascade Graph Learning

This repo provides a reference implementation of Contrastive Cascade Graph Learning (CCGL) framework as described in the paper:

CCGL: Contrastive Cascade Graph Learning
Xovee Xu, Fan Zhou, Kunpeng Zhang, and Siyuan Liu
Submitted for review
arXiv:2107.12576

Dataset

You can download all five datasets (Weibo, Twitter, ACM, APS, and DBLP) via any one of the following links:

Google Drive Dropbox Onedrive Tencent Drive Baidu Netdisk
trqg

Environmental Settings

Our experiments are conducted on Ubuntu 20.04, a single NVIDIA 1080Ti GPU, 48GB RAM, and Intel i7 8700K. CCGL is implemented by Python 3.7, TensorFlow 2.3, Cuda 10.1, and Cudnn 7.6.5.

Create a virtual environment and install GPU-support packages via Anaconda:

# create virtual environment
conda create --name=ccgl python=3.7 cudatoolkit=10.1 cudnn=7.6.5

# activate virtual environment
conda activate ccgl

# install other dependencies
pip install -r requirements.txt

Usage

Here we take Weibo dataset as an example to demonstrate the usage.

Preprocess

Step 1: divide, filter, generate labeled and unlabeled cascades:

cd ccgl
# labeled cascades
python src/gene_cas.py --input=./datasets/weibo/ --unlabel=False
# unlabeled cascades
python src/gene_cas.py --input=./datasets/weibo/ --unlabel=True

Step 2: augment both labeled and unlabeled cascades (here we use the AugSIM strategy):

python src/augmentor.py --input=./datasets/weibo/ --aug_strategy=AugSIM

Step 3: generate cascade embeddings:

python src/gene_emb.py --input=./datasets/weibo/ 

Pre-training

python src/pre_training.py --name=weibo-0 --input=./datasets/weibo/ --projection_head=4-1

The saved pre-training model is named as weibo-0.

Fine-tuning

python src/fine_tuning.py --name=weibo-0 --num=0 --input=./datasets/weibo/ --projection_head=4-1

Here we load the pre-trained model weibo-0 and save the teacher network as weibo-0-0.

Distillation

python src/distilling.py --name=weibo-0-0 --num=0 --input=./datasets/weibo/ --projection_head=4-1

Here we load the teacher network weibo-0-0 and save the student network as weibo-0-0-student-0.

(Optional) Run the Base model

python src/base_model.py --input=./datasets/weibo/ 

CCGL model weights

We provide pre-trained, fine-tuned, and distilled CCGL model weights. Please see details in the following table.

Model Dataset Label Fraction Projection Head MSLE Weights
Pre-trained CCGL model Weibo 100% 4-1 - Download
Pre-trained CCGL model Weibo 10% 4-4 - Download
Pre-trained CCGL model Weibo 1% 4-3 - Download
Fine-tuned CCGL model Weibo 100% 4-1 2.70 Download
Fine-tuned CCGL model Weibo 10% 4-4 2.87 Download
Fine-tuned CCGL model Weibo 1% 4-3 3.30 Download

Load weights into the model:

# construct model, carefully check projection head designs:
# use different number of Dense layers
...
# load weights for fine-tuning, distillation, or evaluation
model.load_weights(weight_path)

Check src/fine_tuning.py and src/distilling.py for weights loading examples.

Default hyper-parameter settings

Unless otherwise specified, we use following default hyper-parameter settings.

Param Value Param Value
Augmentation strength 0.1 Pre-training epochs 30
Augmentation strategy AugSIM Projection Head (100%) 4-1
Batch size 64 Projection Head (10%) 4-4
Early stopping patience 20 Projection Head (1%) 4-3
Embedding dimension 64 Model size 128 (4x)
Learning rate 5e-4 Temperature 0.1

Change Logs

  • Jul 21, 2021: fix a bug and some annotations

Cite

If you find our paper & code are useful for your research, please consider citing us 😘 :

@article{xu2021ccgl, 
  author = {Xovee Xu and Fan Zhou and Kunpeng Zhang and Siyuan Liu}, 
  title = {{CCGL}: Contrastive Cascade Graph Learning}, 
  journal = {arXiv:2107.12576},
  year = {2021}, 
}

We also have a survey paper you might be interested:

@article{zhou2021survey,
  author = {Fan Zhou and Xovee Xu and Goce Trajcevski and Kunpeng Zhang}, 
  title = {A Survey of Information Cascade Analysis: Models, Predictions, and Recent Advances}, 
  journal = {ACM Computing Surveys (CSUR)}, 
  volume = {54},
  number = {2},
  year = {2021},
  articleno = {27},
  numpages = {36},
  doi = {10.1145/3433000},
}

Acknowledgment

We would like to thank Xiuxiu Qi, Ce Li, Qing Yang, and Wenxiong Li for sharing their computing resources and help us to test the codes. We would also like to show our gratitude to the authors of SimCLR (and Sayak Paul), node2vec, DeepHawkes, and others, for sharing their codes and datasets.

Contact

For any questions please open an issue or drop an email to: xovee at ieee.org

Owner
Xovee Xu
PhD student in UESTC, Chengdu, China.
Xovee Xu
Learning to Reach Goals via Iterated Supervised Learning

Vanilla GCSL This repository contains a vanilla implementation of "Learning to Reach Goals via Iterated Supervised Learning" proposed by Dibya Gosh et

Christoph Heindl 4 Aug 10, 2022
Repo 4 basic seminar §How to make human machine readable"

WORK IN PROGRESS... Notebooks from the Seminar: Human Machine Readable WS21/22 Introduction into programming Georg Trogemann, Christian Heck, Mattis

experimental-informatics 3 May 29, 2022
Contains modeling practice materials and homework for the Computational Neuroscience course at Okinawa Institute of Science and Technology

A310 Computational Neuroscience - Okinawa Institute of Science and Technology, 2022 This repository contains modeling practice materials and homework

Sungho Hong 1 Jan 24, 2022
A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal

A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal, but extensible training loop which is flexible enough to handle the majority of use cases,

Chris Hughes 110 Dec 23, 2022
Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network

Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network This repository is the official implementation of Speech Separati

Kai Li (李凯) 116 Nov 09, 2022
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexan

Phan Nguyen 1 Dec 16, 2021
A curated list of awesome Deep Learning tutorials, projects and communities.

Awesome Deep Learning Table of Contents Books Courses Videos and Lectures Papers Tutorials Researchers Websites Datasets Conferences Frameworks Tools

Christos 20k Jan 05, 2023
the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

EmbedSeg Introduction This repository hosts the version of the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

JugLab 88 Dec 25, 2022
Pytorch and Torch testing code of CartoonGAN

CartoonGAN-Test-Pytorch-Torch Pytorch and Torch testing code of CartoonGAN [Chen et al., CVPR18]. With the released pretrained models by the authors,

Yijun Li 642 Dec 27, 2022
MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution

Octave Convolution MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution Imag

Meta Research 549 Dec 28, 2022
Boost learning for GNNs from the graph structure under challenging heterophily settings. (NeurIPS'20)

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,

GEMS Lab: Graph Exploration & Mining at Scale, University of Michigan 70 Dec 18, 2022
A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images

BaSiC Matlab code accompanying A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images by Tingying Peng, Kurt Thorn, Timm Schr

Marr Lab 34 Dec 18, 2022
We propose a new method for effective shadow removal by regarding it as an exposure fusion problem.

Auto-exposure fusion for single-image shadow removal We propose a new method for effective shadow removal by regarding it as an exposure fusion proble

Qing Guo 146 Dec 31, 2022
Text-Based Ideal Points

Text-Based Ideal Points Source code for the paper: Text-Based Ideal Points by Keyon Vafa, Suresh Naidu, and David Blei (ACL 2020). Update (June 29, 20

Keyon Vafa 37 Oct 09, 2022
Code for CVPR 2021 paper: Anchor-Free Person Search

Introduction This is the implementationn for Anchor-Free Person Search in CVPR2021 License This project is released under the Apache 2.0 license. Inst

158 Jan 04, 2023
The implementation for the SportsCap (IJCV 2021)

SportsCap: Monocular 3D Human Motion Capture and Fine-grained Understanding in Challenging Sports Videos ProjectPage | Paper | Video | Dataset (Part01

Chen Xin 79 Dec 16, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
Orthogonal Over-Parameterized Training

The inductive bias of a neural network is largely determined by the architecture and the training algorithm. To achieve good generalization, how to effectively train a neural network is of great impo

Weiyang Liu 11 Apr 18, 2022
Code for the paper titled "Prabhupadavani: A Code-mixed Speech Translation Data for 25 languages"

Prabhupadavani: A Code-mixed Speech Translation Data for 25 languages Code for the paper titled "Prabhupadavani: A Code-mixed Speech Translation Data

Ayush Daksh 12 Dec 01, 2022