CCCL: Contrastive Cascade Graph Learning.

Overview

CCGL: Contrastive Cascade Graph Learning

This repo provides a reference implementation of Contrastive Cascade Graph Learning (CCGL) framework as described in the paper:

CCGL: Contrastive Cascade Graph Learning
Xovee Xu, Fan Zhou, Kunpeng Zhang, and Siyuan Liu
Submitted for review
arXiv:2107.12576

Dataset

You can download all five datasets (Weibo, Twitter, ACM, APS, and DBLP) via any one of the following links:

Google Drive Dropbox Onedrive Tencent Drive Baidu Netdisk
trqg

Environmental Settings

Our experiments are conducted on Ubuntu 20.04, a single NVIDIA 1080Ti GPU, 48GB RAM, and Intel i7 8700K. CCGL is implemented by Python 3.7, TensorFlow 2.3, Cuda 10.1, and Cudnn 7.6.5.

Create a virtual environment and install GPU-support packages via Anaconda:

# create virtual environment
conda create --name=ccgl python=3.7 cudatoolkit=10.1 cudnn=7.6.5

# activate virtual environment
conda activate ccgl

# install other dependencies
pip install -r requirements.txt

Usage

Here we take Weibo dataset as an example to demonstrate the usage.

Preprocess

Step 1: divide, filter, generate labeled and unlabeled cascades:

cd ccgl
# labeled cascades
python src/gene_cas.py --input=./datasets/weibo/ --unlabel=False
# unlabeled cascades
python src/gene_cas.py --input=./datasets/weibo/ --unlabel=True

Step 2: augment both labeled and unlabeled cascades (here we use the AugSIM strategy):

python src/augmentor.py --input=./datasets/weibo/ --aug_strategy=AugSIM

Step 3: generate cascade embeddings:

python src/gene_emb.py --input=./datasets/weibo/ 

Pre-training

python src/pre_training.py --name=weibo-0 --input=./datasets/weibo/ --projection_head=4-1

The saved pre-training model is named as weibo-0.

Fine-tuning

python src/fine_tuning.py --name=weibo-0 --num=0 --input=./datasets/weibo/ --projection_head=4-1

Here we load the pre-trained model weibo-0 and save the teacher network as weibo-0-0.

Distillation

python src/distilling.py --name=weibo-0-0 --num=0 --input=./datasets/weibo/ --projection_head=4-1

Here we load the teacher network weibo-0-0 and save the student network as weibo-0-0-student-0.

(Optional) Run the Base model

python src/base_model.py --input=./datasets/weibo/ 

CCGL model weights

We provide pre-trained, fine-tuned, and distilled CCGL model weights. Please see details in the following table.

Model Dataset Label Fraction Projection Head MSLE Weights
Pre-trained CCGL model Weibo 100% 4-1 - Download
Pre-trained CCGL model Weibo 10% 4-4 - Download
Pre-trained CCGL model Weibo 1% 4-3 - Download
Fine-tuned CCGL model Weibo 100% 4-1 2.70 Download
Fine-tuned CCGL model Weibo 10% 4-4 2.87 Download
Fine-tuned CCGL model Weibo 1% 4-3 3.30 Download

Load weights into the model:

# construct model, carefully check projection head designs:
# use different number of Dense layers
...
# load weights for fine-tuning, distillation, or evaluation
model.load_weights(weight_path)

Check src/fine_tuning.py and src/distilling.py for weights loading examples.

Default hyper-parameter settings

Unless otherwise specified, we use following default hyper-parameter settings.

Param Value Param Value
Augmentation strength 0.1 Pre-training epochs 30
Augmentation strategy AugSIM Projection Head (100%) 4-1
Batch size 64 Projection Head (10%) 4-4
Early stopping patience 20 Projection Head (1%) 4-3
Embedding dimension 64 Model size 128 (4x)
Learning rate 5e-4 Temperature 0.1

Change Logs

  • Jul 21, 2021: fix a bug and some annotations

Cite

If you find our paper & code are useful for your research, please consider citing us 😘 :

@article{xu2021ccgl, 
  author = {Xovee Xu and Fan Zhou and Kunpeng Zhang and Siyuan Liu}, 
  title = {{CCGL}: Contrastive Cascade Graph Learning}, 
  journal = {arXiv:2107.12576},
  year = {2021}, 
}

We also have a survey paper you might be interested:

@article{zhou2021survey,
  author = {Fan Zhou and Xovee Xu and Goce Trajcevski and Kunpeng Zhang}, 
  title = {A Survey of Information Cascade Analysis: Models, Predictions, and Recent Advances}, 
  journal = {ACM Computing Surveys (CSUR)}, 
  volume = {54},
  number = {2},
  year = {2021},
  articleno = {27},
  numpages = {36},
  doi = {10.1145/3433000},
}

Acknowledgment

We would like to thank Xiuxiu Qi, Ce Li, Qing Yang, and Wenxiong Li for sharing their computing resources and help us to test the codes. We would also like to show our gratitude to the authors of SimCLR (and Sayak Paul), node2vec, DeepHawkes, and others, for sharing their codes and datasets.

Contact

For any questions please open an issue or drop an email to: xovee at ieee.org

Owner
Xovee Xu
PhD student in UESTC, Chengdu, China.
Xovee Xu
[ICCV 2021] Target Adaptive Context Aggregation for Video Scene Graph Generation

Target Adaptive Context Aggregation for Video Scene Graph Generation This is a PyTorch implementation for Target Adaptive Context Aggregation for Vide

Multimedia Computing Group, Nanjing University 44 Dec 14, 2022
🇰🇷 Text to Image in Korean

KoDALLE Utilizing pretrained language model’s token embedding layer and position embedding layer as DALLE’s text encoder. Background Training DALLE mo

HappyFace 74 Sep 22, 2022
Source code and data in paper "MDFEND: Multi-domain Fake News Detection (CIKM'21)"

MDFEND: Multi-domain Fake News Detection This is an official implementation for MDFEND: Multi-domain Fake News Detection which has been accepted by CI

Rich 40 Dec 18, 2022
An OpenAI Gym environment for Super Mario Bros

gym-super-mario-bros An OpenAI Gym environment for Super Mario Bros. & Super Mario Bros. 2 (Lost Levels) on The Nintendo Entertainment System (NES) us

Andrew Stelmach 1 Jan 05, 2022
Paaster is a secure by default end-to-end encrypted pastebin built with the objective of simplicity.

Follow the development of our desktop client here Paaster Paaster is a secure by default end-to-end encrypted pastebin built with the objective of sim

Ward 211 Dec 25, 2022
ICCV2021 - A New Journey from SDRTV to HDRTV.

ICCV2021 - A New Journey from SDRTV to HDRTV.

XyChen 82 Dec 27, 2022
Official implementation of Unfolded Deep Kernel Estimation for Blind Image Super-resolution.

Unfolded Deep Kernel Estimation for Blind Image Super-resolution Hongyi Zheng, Hongwei Yong, Lei Zhang, "Unfolded Deep Kernel Estimation for Blind Ima

Z80 15 Dec 26, 2022
Static Features Classifier - A static features classifier for Point-Could clusters using an Attention-RNN model

Static Features Classifier This is a static features classifier for Point-Could

ABDALKARIM MOHTASIB 1 Jan 25, 2022
Urban mobility simulations with Python3, RLlib (Deep Reinforcement Learning) and Mesa (Agent-based modeling)

Deep Reinforcement Learning for Smart Cities Documentation RLlib: https://docs.ray.io/en/master/rllib.html Mesa: https://mesa.readthedocs.io/en/stable

1 May 15, 2022
Denoising Normalizing Flow

Denoising Normalizing Flow Christian Horvat and Jean-Pascal Pfister 2021 We combine Normalizing Flows (NFs) and Denoising Auto Encoder (DAE) by introd

CHrvt 17 Oct 15, 2022
Towards uncontrained hand-object reconstruction from RGB videos

Towards uncontrained hand-object reconstruction from RGB videos Yana Hasson, Gül Varol, Ivan Laptev and Cordelia Schmid Project page Paper Table of Co

Yana 69 Dec 27, 2022
Meta Learning for Semi-Supervised Few-Shot Classification

few-shot-ssl-public Code for paper Meta-Learning for Semi-Supervised Few-Shot Classification. [arxiv] Dependencies cv2 numpy pandas python 2.7 / 3.5+

Mengye Ren 501 Jan 08, 2023
Codebase for ECCV18 "The Sound of Pixels"

Sound-of-Pixels Codebase for ECCV18 "The Sound of Pixels". *This repository is under construction, but the core parts are already there. Environment T

Hang Zhao 318 Dec 20, 2022
🕵 Artificial Intelligence for social control of public administration

Non-tech crash course into Operação Serenata de Amor Tech crash course into Operação Serenata de Amor Contributing with code and tech skills Supportin

Open Knowledge Brasil - Rede pelo Conhecimento Livre 4.4k Dec 31, 2022
Hypernetwork-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels

Hypernet-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels The implementation of Hypernet-Ensemble Le

Sungmin Hong 6 Jul 18, 2022
Pytorch Implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension)

DiffSinger - PyTorch Implementation PyTorch implementation of DiffSinger: Diffusion Acoustic Model for Singing Voice Synthesis (TTS Extension). Status

Keon Lee 152 Jan 02, 2023
Pcos-prediction - Predicts the likelihood of Polycystic Ovary Syndrome based on patient attributes and symptoms

PCOS Prediction 🥼 Predicts the likelihood of Polycystic Ovary Syndrome based on

Samantha Van Seters 1 Jan 10, 2022
Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection

Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection abstract:Unlike 2D object detection where all RoI featur

DK. Zhang 2 Oct 07, 2022
Official TensorFlow code for the forthcoming paper

~ Efficient-CapsNet ~ Are you tired of over inflated and overused convolutional neural networks? You're right! It's time for CAPSULES :)

Vittorio Mazzia 203 Jan 08, 2023
Learning What and Where to Draw

###Learning What and Where to Draw Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee This is the code for our NIPS 201

Scott Ellison Reed 337 Nov 18, 2022