Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Overview

Deep Image Search - AI-Based Image Search Engine

Brain+Machine

Deep Image Search is an AI-based image search engine that includes deep transfer learning features Extraction and tree-based vectorized search

Generic badge Generic badge Generic badge Generic badge Generic badgeGeneric badge

Brain+Machine Creators

Nilesh Verma

Features

  • Faster Search O(logN) Complexity.
  • High Accurate Output Result.
  • Best for Implementing on python based web application or APIs.
  • Best implementation for College students and freshers for project creation.
  • Applications are Images based E-commerce recommendation, Social media and other image-based platforms that want to implement image recommendation and search.

Installation

This library is compatible with both windows and Linux system you can just use PIP command to install this library on your system:

pip install DeepImageSearch

If you are facing any VS C++ 14 related issue in windows during installation, kindly refer to following solution: Pip error: Microsoft Visual C++ 14.0 is required

How To Use?

We have provided the Demo folder under the GitHub repository, you can find the example in both .py and .ipynb file. Following are the ideal flow of the code:

1. Importing the Important Classes

There are three important classes you need to load LoadData - for data loading, Index - for indexing the images to database/folder, SearchImage - For searching and Plotting the images

# Importing the proper classes
from DeepImageSearch import Index,LoadData,SearchImage

2. Loading the Images Data

For loading the images data we need to use the LoadData object, from there we can import images from the CSV file and Single/Multiple Folders.

# load the Images from the Folder (You can also import data from multiple folders in python list type)
image_list = LoadData().from_folder(['images','wiki-images'])
# Load data from CSV file
image_list = LoadData().from_csv(csv_file_path='your_csv_file.csv',images_column_name='column_name)

3. Indexing and Saving The File in Local Folder

For faster retrieval we are using tree-based indexing techniques for Images features, So for that, we need to store meta-information on the local path [meta-data-files/] folder.

# For Faster Serching we need to index Data first, After Indexing all the meta data stored on the local path
Index(image_list).Start()

3. Searching

Searching operation is performed by the following method:

# for searching, you need to give the image path and the number of the similar image you want
SearchImage().get_similar_images(image_path=image_list[0],number_of_images=5)

you can also plot some similar images for viewing purpose by following the code method:

# If you want to plot similar images you can use this method, It will plot 16 most similar images from the data index
SearchImage().plot_similar_images(image_path = image_list[0])

Complete Code

# Importing the proper classes
from DeepImageSearch import Index,LoadData,SearchImage
# load the Images from the Folder (You can also import data from multiple folder in python list type)
image_list = LoadData().from_folder(['images','wiki-images'])
# For Faster Serching we need to index Data first, After Indexing all the meta data stored on the local path
Index(image_list).Start()
# for searching you need to give the image path and the number of similar image you want
SearchImage().get_similar_images(image_path=image_list[0],number_of_images=5)
# If you want to plot similar images the you can use this method, It will plot 16 most similar images from the data index
SearchImage().plot_similar_images(image_path = image_list[0])

License

MIT License

Copyright (c) 2021 Nilesh Verma

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

More cool features will be added in future. Feel free to give suggestions, report bugs and contribute.

You might also like...
A hobby project which includes a hand-gesture based virtual piano using a mobile phone camera and OpenCV library functions
A hobby project which includes a hand-gesture based virtual piano using a mobile phone camera and OpenCV library functions

Overview This is a hobby project which includes a hand-gesture controlled virtual piano using an android phone camera and some OpenCV library. My moti

Softlearning is a reinforcement learning framework for training maximum entropy policies in continuous domains. Includes the official implementation of the Soft Actor-Critic algorithm.

Softlearning Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is

A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

This is a simple backtesting framework to help you test your crypto currency trading. It includes a way to download and store historical crypto data and to execute a trading strategy.

You can use this simple crypto backtesting script to ensure your trading strategy is successful Minimal setup required and works well with static TP a

The Hailo Model Zoo includes pre-trained models and a full building and evaluation environment
The Hailo Model Zoo includes pre-trained models and a full building and evaluation environment

Hailo Model Zoo The Hailo Model Zoo provides pre-trained models for high-performance deep learning applications. Using the Hailo Model Zoo you can mea

Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

Comments
  • Similar images

    Similar images

    The function to plot similar images plot 16 images, how do we know which image is related to or similar to the which image according to the algorithm?

    I mean like it should say these two are similar and the other two are similar to each other, no?

    opened by amrrs 3
  • TypeError: show() takes 1 positional argument but 2 were given

    TypeError: show() takes 1 positional argument but 2 were given

    Classification.py:

    from DeepImageSearch import Index, LoadData, SearchImage

    folders = [] folders.append("monos_segmented") image_list = LoadData().from_folder(folders)

    print (image_list)

    Index(image_list).Start()

    SearchImage().get_similar_images(image_path=image_list[0],number_of_images=5)

    SearchImage().plot_similar_images(image_path = image_list[0])

    Running...

    Traceback (most recent call last): File "Classification.py", line 13, in SearchImage().plot_similar_images(image_path = image_list[0]) File "/home/mike/.local/lib/python3.8/site-packages/DeepImageSearch/DeepImageSearch.py", line 132, in plot_similar_images plt.show(fig) File "/home/mike/.local/lib/python3.8/site-packages/matplotlib/pyplot.py", line 378, in show return _backend_mod.show(*args, **kwargs) TypeError: show() takes 1 positional argument but 2 were given

    opened by mikedorin 1
  • Single thread.

    Single thread.

    Hello,

    What i want to ask is, cant we make extracting features parallel? I'm using 3060 Ti and it seems a little bit slow for this GPU.

    Or am i wrong?

    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 14ms/step                                                                                                                    | 3070/242451 [02:25<3:08:09, 21.20it/s]
    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 13ms/step                                                                                                                    | 3073/242451 [02:25<3:07:27, 21.28it/s]
    1/1 [==============================] - 0s 15ms/step
    1/1 [==============================] - 0s 13ms/step
    1/1 [==============================] - 0s 14ms/step                                                                                                                    | 3076/242451 [02:25<3:07:21, 21.29it/s]
    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 13ms/step
    1/1 [==============================] - 0s 14ms/step                                                                                                                    | 3079/242451 [02:25<3:06:30, 21.39it/s]
    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 14ms/step                                                                                                                    | 3082/242451 [02:26<3:07:04, 21.33it/s]
    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 13ms/step
    1/1 [==============================] - 0s 14ms/step                                                                                                                    | 3085/242451 [02:26<3:08:38, 21.15it/s]
    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 14ms/step                                                                                                                    | 3088/242451 [02:26<3:09:21, 21.07it/s]
    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 15ms/step                                                                                                                    | 3091/242451 [02:26<3:09:04, 21.10it/s]
    1/1 [==============================] - 0s 13ms/step
    1/1 [==============================] - 0s 14ms/step
    1/1 [==============================] - 0s 13ms/step                                                                                                                    | 3094/242451 [02:26<3:11:12, 20.86it/s]
    1/1 [==============================] - 0s 13ms/step
    1/1 [==============================] - 0s 14ms/step
    

    Best regards.

    opened by ucyildirim 0
  • Problems with TensorFlow

    Problems with TensorFlow

    Hello,

    when trying to install DeepImageSearch on a Windows machine I got this:

    ERROR: Cannot install deepimagesearch==1.0, deepimagesearch==1.1, deepimagesearch==1.2, deepimagesearch==1.3 and deepimagesearch==1.4 because these package versions have conflicting dependencies.
    
    The conflict is caused by:
        deepimagesearch 1.4 depends on tensorflow
        deepimagesearch 1.3 depends on tensorflow
        deepimagesearch 1.2 depends on tensorflow
        deepimagesearch 1.1 depends on tensorflow
        deepimagesearch 1.0 depends on tensorflow`
    

    I tried to install it like stated here: https://stackoverflow.com/questions/69751318/i-had-trouble-installing-python-deepimagesearch-library but also same error as mentioned there by using this.

    ERROR: Could not find a version that satisfies the requirement tensorflow==2.3.2 (from versions: none)
    ERROR: No matching distribution found for tensorflow==2.3.
    

    Digging into TensorFlow itself, it seems that it is not running on windows properly anymore beginning from version 2.11 - that would not matter, if the version required by your library would still be available

    Using Windows 10 with Python 3.11.0 (main, Oct 24 2022, 18:26:48) [MSC v.1933 64 bit (AMD64)] on win32

    Installing https://pypi.org/project/tensorflow-intel/ and changing requirements in your library did not help either.

    So, what else I can do ?

    Thanks in advance for any help !

    opened by Creat1veM1nd 6
Owner
Data Science Enthusiast & Digital Influencer
This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking

SimpleTrack This is the repository for our paper SimpleTrack: Understanding and Rethinking 3D Multi-object Tracking. We are still working on writing t

TuSimple 189 Dec 26, 2022
Supervised & unsupervised machine-learning techniques are applied to the database of weighted P4s which admit Calabi-Yau hypersurfaces.

Weighted Projective Spaces ML Description: The database of 5-vectors describing 4d weighted projective spaces which admit Calabi-Yau hypersurfaces are

Ed Hirst 3 Sep 08, 2022
A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation

Paper Khoi Nguyen, Sinisa Todorovic "A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation", accepted to ICCV 2021 Our code is mai

Khoi Nguyen 5 Aug 14, 2022
A Free and Open Source Python Library for Multiobjective Optimization

Platypus What is Platypus? Platypus is a framework for evolutionary computing in Python with a focus on multiobjective evolutionary algorithms (MOEAs)

Project Platypus 424 Dec 18, 2022
Bare bones use-case for deploying a containerized web app (built in streamlit) on AWS.

Containerized Streamlit web app This repository is featured in a 3-part series on Deploying web apps with Streamlit, Docker, and AWS. Checkout the blo

Collin Prather 62 Jan 02, 2023
Cereal box identification in store shelves using computer vision and a single train image per model.

Product Recognition on Store Shelves Description You can read the task description here. Report You can read and download our report here. Step A - Mu

Nicholas Baraghini 1 Jan 21, 2022
Deep Learning for Morphological Profiling

Deep Learning for Morphological Profiling An end-to-end implementation of a ML System for morphological profiling using self-supervised learning to di

Danielh Carranza 0 Jan 20, 2022
Fast Differentiable Matrix Sqrt Root

Fast Differentiable Matrix Sqrt Root Geometric Interpretation of Matrix Square Root and Inverse Square Root This repository constains the official Pyt

YueSong 42 Dec 30, 2022
Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather

LiDAR fog simulation Created by Martin Hahner at the Computer Vision Lab of ETH Zurich. This is the official code release of the paper Fog Simulation

Martin Hahner 110 Dec 30, 2022
PyTorch implementation of PP-LCNet

PP-LCNet-Pytorch Pre-Trained Models Google Drive p018 Accuracy Models Top1 Top5 PPLCNet_x0_25 0.5186 0.7565 PPLCNet_x0_35 0.5809 0.8083 PPLCNet_x0_5 0

24 Dec 12, 2022
Server files for UltimateLabeling

UltimateLabeling server files Server files for UltimateLabeling. git clone https://github.com/alexandre01/UltimateLabeling_server.git cd UltimateLabel

Alexandre Carlier 4 Oct 10, 2022
Compositional Sketch Search

Compositional Sketch Search Official repository for ICIP 2021 Paper: Compositional Sketch Search Requirements Install and activate conda environment c

Alexander Black 8 Sep 06, 2021
My personal Home Assistant configuration.

About This is my personal Home Assistant configuration. My guiding princile is to have full local control of all my devices. I intend everything to ru

Chris Turra 13 Jun 07, 2022
The official PyTorch code for 'DER: Dynamically Expandable Representation for Class Incremental Learning' accepted by CVPR2021

DER.ClassIL.Pytorch This repo is the official implementation of DER: Dynamically Expandable Representation for Class Incremental Learning (CVPR 2021)

rhyssiyan 108 Jan 01, 2023
Tensorflow 2.x based implementation of EDSR, WDSR and SRGAN for single image super-resolution

Single Image Super-Resolution with EDSR, WDSR and SRGAN A Tensorflow 2.x based implementation of Enhanced Deep Residual Networks for Single Image Supe

Martin Krasser 1.3k Jan 06, 2023
Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression

Regression Transformer Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression . Development se

International Business Machines 27 Jan 05, 2023
Code of paper "Compositionally Generalizable 3D Structure Prediction"

Compositionally Generalizable 3D Structure Prediction In this work, We bring in the concept of compositional generalizability and factorizes the 3D sh

Songfang Han 30 Dec 17, 2022
Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable.

Diffrax Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable. Diffrax is a JAX-based library providing numerical differe

Patrick Kidger 717 Jan 09, 2023
PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020).

Scaffold-Federated-Learning PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020). Environment numpy=

KI 30 Dec 29, 2022
Many Class Activation Map methods implemented in Pytorch for CNNs and Vision Transformers. Including Grad-CAM, Grad-CAM++, Score-CAM, Ablation-CAM and XGrad-CAM

Class Activation Map methods implemented in Pytorch pip install grad-cam ⭐ Tested on many Common CNN Networks and Vision Transformers. ⭐ Includes smoo

Jacob Gildenblat 6.6k Jan 06, 2023