Softlearning is a reinforcement learning framework for training maximum entropy policies in continuous domains. Includes the official implementation of the Soft Actor-Critic algorithm.

Overview

Softlearning

Softlearning is a deep reinforcement learning toolbox for training maximum entropy policies in continuous domains. The implementation is fairly thin and primarily optimized for our own development purposes. It utilizes the tf.keras modules for most of the model classes (e.g. policies and value functions). We use Ray for the experiment orchestration. Ray Tune and Autoscaler implement several neat features that enable us to seamlessly run the same experiment scripts that we use for local prototyping to launch large-scale experiments on any chosen cloud service (e.g. GCP or AWS), and intelligently parallelize and distribute training for effective resource allocation.

This implementation uses Tensorflow. For a PyTorch implementation of soft actor-critic, take a look at rlkit.

Getting Started

Prerequisites

The environment can be run either locally using conda or inside a docker container. For conda installation, you need to have Conda installed. For docker installation you will need to have Docker and Docker Compose installed. Also, most of our environments currently require a MuJoCo license.

Conda Installation

  1. Download and install MuJoCo 1.50 and 2.00 from the MuJoCo website. We assume that the MuJoCo files are extracted to the default location (~/.mujoco/mjpro150 and ~/.mujoco/mujoco200_{platform}). Unfortunately, gym and dm_control expect different paths for MuJoCo 2.00 installation, which is why you will need to have it installed both in ~/.mujoco/mujoco200_{platform} and ~/.mujoco/mujoco200. The easiest way is to create a symlink from ~/.mujoco/mujoco200_{plaftorm} -> ~/.mujoco/mujoco200 with: ln -s ~/.mujoco/mujoco200_{platform} ~/.mujoco/mujoco200.

  2. Copy your MuJoCo license key (mjkey.txt) to ~/.mujoco/mjkey.txt:

  3. Clone softlearning

git clone https://github.com/rail-berkeley/softlearning.git ${SOFTLEARNING_PATH}
  1. Create and activate conda environment, install softlearning to enable command line interface.
cd ${SOFTLEARNING_PATH}
conda env create -f environment.yml
conda activate softlearning
pip install -e ${SOFTLEARNING_PATH}

The environment should be ready to run. See examples section for examples of how to train and simulate the agents.

Finally, to deactivate and remove the conda environment:

conda deactivate
conda remove --name softlearning --all

Docker Installation

docker-compose

To build the image and run the container:

export MJKEY="$(cat ~/.mujoco/mjkey.txt)" \
    && docker-compose \
        -f ./docker/docker-compose.dev.cpu.yml \
        up \
        -d \
        --force-recreate

You can access the container with the typical Docker exec-command, i.e.

docker exec -it softlearning bash

See examples section for examples of how to train and simulate the agents.

Finally, to clean up the docker setup:

docker-compose \
    -f ./docker/docker-compose.dev.cpu.yml \
    down \
    --rmi all \
    --volumes

Examples

Training and simulating an agent

  1. To train the agent
softlearning run_example_local examples.development \
    --algorithm SAC \
    --universe gym \
    --domain HalfCheetah \
    --task v3 \
    --exp-name my-sac-experiment-1 \
    --checkpoint-frequency 1000  # Save the checkpoint to resume training later
  1. To simulate the resulting policy: First, find the absolute path that the checkpoint is saved to. By default (i.e. without specifying the log-dir argument to the previous script), the data is saved under ~/ray_results/<universe>/<domain>/<task>/<datatimestamp>-<exp-name>/<trial-id>/<checkpoint-id>. For example: ~/ray_results/gym/HalfCheetah/v3/2018-12-12T16-48-37-my-sac-experiment-1-0/mujoco-runner_0_seed=7585_2018-12-12_16-48-37xuadh9vd/checkpoint_1000/. The next command assumes that this path is found from ${SAC_CHECKPOINT_DIR} environment variable.
python -m examples.development.simulate_policy \
    ${SAC_CHECKPOINT_DIR} \
    --max-path-length 1000 \
    --num-rollouts 1 \
    --render-kwargs '{"mode": "human"}'

examples.development.main contains several different environments and there are more example scripts available in the /examples folder. For more information about the agents and configurations, run the scripts with --help flag: python ./examples/development/main.py --help

optional arguments:
  -h, --help            show this help message and exit
  --universe {robosuite,dm_control,gym}
  --domain DOMAIN
  --task TASK
  --checkpoint-replay-pool CHECKPOINT_REPLAY_POOL
                        Whether a checkpoint should also saved the replay
                        pool. If set, takes precedence over
                        variant['run_params']['checkpoint_replay_pool']. Note
                        that the replay pool is saved (and constructed) piece
                        by piece so that each experience is saved only once.
  --algorithm ALGORITHM
  --policy {gaussian}
  --exp-name EXP_NAME
  --mode MODE
  --run-eagerly RUN_EAGERLY
                        Whether to run tensorflow in eager mode.
  --local-dir LOCAL_DIR
                        Destination local folder to save training results.
  --confirm-remote [CONFIRM_REMOTE]
                        Whether or not to query yes/no on remote run.
  --video-save-frequency VIDEO_SAVE_FREQUENCY
                        Save frequency for videos.
  --cpus CPUS           Cpus to allocate to ray process. Passed to `ray.init`.
  --gpus GPUS           Gpus to allocate to ray process. Passed to `ray.init`.
  --resources RESOURCES
                        Resources to allocate to ray process. Passed to
                        `ray.init`.
  --include-webui INCLUDE_WEBUI
                        Boolean flag indicating whether to start theweb UI,
                        which is a Jupyter notebook. Passed to `ray.init`.
  --temp-dir TEMP_DIR   If provided, it will specify the root temporary
                        directory for the Ray process. Passed to `ray.init`.
  --resources-per-trial RESOURCES_PER_TRIAL
                        Resources to allocate for each trial. Passed to
                        `tune.run`.
  --trial-cpus TRIAL_CPUS
                        CPUs to allocate for each trial. Note: this is only
                        used for Ray's internal scheduling bookkeeping, and is
                        not an actual hard limit for CPUs. Passed to
                        `tune.run`.
  --trial-gpus TRIAL_GPUS
                        GPUs to allocate for each trial. Note: this is only
                        used for Ray's internal scheduling bookkeeping, and is
                        not an actual hard limit for GPUs. Passed to
                        `tune.run`.
  --trial-extra-cpus TRIAL_EXTRA_CPUS
                        Extra CPUs to reserve in case the trials need to
                        launch additional Ray actors that use CPUs.
  --trial-extra-gpus TRIAL_EXTRA_GPUS
                        Extra GPUs to reserve in case the trials need to
                        launch additional Ray actors that use GPUs.
  --num-samples NUM_SAMPLES
                        Number of times to repeat each trial. Passed to
                        `tune.run`.
  --upload-dir UPLOAD_DIR
                        Optional URI to sync training results to (e.g.
                        s3://<bucket> or gs://<bucket>). Passed to `tune.run`.
  --trial-name-template TRIAL_NAME_TEMPLATE
                        Optional string template for trial name. For example:
                        '{trial.trial_id}-seed={trial.config[run_params][seed]
                        }' Passed to `tune.run`.
  --checkpoint-frequency CHECKPOINT_FREQUENCY
                        How many training iterations between checkpoints. A
                        value of 0 (default) disables checkpointing. If set,
                        takes precedence over
                        variant['run_params']['checkpoint_frequency']. Passed
                        to `tune.run`.
  --checkpoint-at-end CHECKPOINT_AT_END
                        Whether to checkpoint at the end of the experiment. If
                        set, takes precedence over
                        variant['run_params']['checkpoint_at_end']. Passed to
                        `tune.run`.
  --max-failures MAX_FAILURES
                        Try to recover a trial from its last checkpoint at
                        least this many times. Only applies if checkpointing
                        is enabled. Passed to `tune.run`.
  --restore RESTORE     Path to checkpoint. Only makes sense to set if running
                        1 trial. Defaults to None. Passed to `tune.run`.
  --server-port SERVER_PORT
                        Port number for launching TuneServer. Passed to
                        `tune.run`.

Resume training from a saved checkpoint

This feature is currently broken!

In order to resume training from previous checkpoint, run the original example main-script, with an additional --restore flag. For example, the previous example can be resumed as follows:

softlearning run_example_local examples.development \
    --algorithm SAC \
    --universe gym \
    --domain HalfCheetah \
    --task v3 \
    --exp-name my-sac-experiment-1 \
    --checkpoint-frequency 1000 \
    --restore ${SAC_CHECKPOINT_PATH}

References

The algorithms are based on the following papers:

Soft Actor-Critic Algorithms and Applications.
Tuomas Haarnoja*, Aurick Zhou*, Kristian Hartikainen*, George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. arXiv preprint, 2018.
paper | videos

Latent Space Policies for Hierarchical Reinforcement Learning.
Tuomas Haarnoja*, Kristian Hartikainen*, Pieter Abbeel, and Sergey Levine. International Conference on Machine Learning (ICML), 2018.
paper | videos

Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor.
Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. International Conference on Machine Learning (ICML), 2018.
paper | videos

Composable Deep Reinforcement Learning for Robotic Manipulation.
Tuomas Haarnoja, Vitchyr Pong, Aurick Zhou, Murtaza Dalal, Pieter Abbeel, Sergey Levine. International Conference on Robotics and Automation (ICRA), 2018.
paper | videos

Reinforcement Learning with Deep Energy-Based Policies.
Tuomas Haarnoja*, Haoran Tang*, Pieter Abbeel, Sergey Levine. International Conference on Machine Learning (ICML), 2017.
paper | videos

If Softlearning helps you in your academic research, you are encouraged to cite our paper. Here is an example bibtex:

@techreport{haarnoja2018sacapps,
  title={Soft Actor-Critic Algorithms and Applications},
  author={Tuomas Haarnoja and Aurick Zhou and Kristian Hartikainen and George Tucker and Sehoon Ha and Jie Tan and Vikash Kumar and Henry Zhu and Abhishek Gupta and Pieter Abbeel and Sergey Levine},
  journal={arXiv preprint arXiv:1812.05905},
  year={2018}
}
Joint Versus Independent Multiview Hashing for Cross-View Retrieval[J] (IEEE TCYB 2021, PyTorch Code)

Thanks to the low storage cost and high query speed, cross-view hashing (CVH) has been successfully used for similarity search in multimedia retrieval. However, most existing CVH methods use all view

4 Nov 19, 2022
Implementation of "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing".

DeepOrder Implementation of DeepOrder for the paper "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing". Project

6 Nov 07, 2022
Rule based classification A hotel s customers dataset

Rule-based-classification-A-hotel-s-customers-dataset- Aim: Categorize new customers by segment and predict how much revenue they can generate This re

Şebnem 4 Jan 02, 2022
PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time The implementation is based on SIGGRAPH Aisa'20. Dependencies Python 3.7 Ubuntu

soratobtai 124 Dec 08, 2022
The repo for reproducing Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

ECIR Reproducibility Paper: Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study This code corresponds to the reproducibility

ielab 3 Mar 31, 2022
Adaptive Attention Span for Reinforcement Learning

Adaptive Transformers in RL Official implementation of Adaptive Transformers in RL In this work we replicate several results from Stabilizing Transfor

100 Nov 15, 2022
Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation

Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation Paper Multi-Target Adversarial Frameworks for Domain Adaptation in

Valeo.ai 20 Jun 21, 2022
This a classic fintech problem that introduces real life difficulties such as data imbalance. Check out the notebook to find out more!

Credit Card Fraud Detection Introduction Online transactions have become a crucial part of any business over the years. Many of those transactions use

Jonathan Hasbani 0 Jan 20, 2022
You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling

You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling Transformer-based models are widely used in natural language processi

Zhanpeng Zeng 12 Jan 01, 2023
An Industrial Grade Federated Learning Framework

DOC | Quick Start | 中文 FATE (Federated AI Technology Enabler) is an open-source project initiated by Webank's AI Department to provide a secure comput

Federated AI Ecosystem 4.8k Jan 09, 2023
A facial recognition doorbell system using a Raspberry Pi

Facial Recognition Doorbell This project expands on the person-detecting doorbell system to allow it to identify faces, and announce names accordingly

rydercalmdown 22 Apr 15, 2022
Implementation of GGB color space

GGB Color Space This package is implementation of GGB color space from Development of a Robust Algorithm for Detection of Nuclei and Classification of

Resha Dwika Hefni Al-Fahsi 2 Oct 06, 2021
Keyword spotting on Arm Cortex-M Microcontrollers

Keyword spotting for Microcontrollers This repository consists of the tensorflow models and training scripts used in the paper: Hello Edge: Keyword sp

Arm Software 1k Dec 30, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT).

Dynamic-Vision-Transformer (Pytorch) This repo contains the official code and pre-trained models for the Dynamic Vision Transformer (DVT). Not All Ima

210 Dec 18, 2022
Training Structured Neural Networks Through Manifold Identification and Variance Reduction

Training Structured Neural Networks Through Manifold Identification and Variance Reduction This repository is a pytorch implementation of the Regulari

0 Dec 23, 2021
The repository offers the official implementation of our BMVC 2021 paper in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
Transport Mode detection - can detect the mode of transport with the help of features such as acceeration,jerk etc

title emoji colorFrom colorTo sdk app_file pinned Transport_Mode_Detector 🚀 purple yellow gradio app.py false Configuration title: string Display tit

Nishant Rajadhyaksha 3 Jan 16, 2022
The official code for paper "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Modeling".

R2D2 This is the official code for paper titled "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Mode

Alipay 49 Dec 17, 2022
Official implementation of "MetaSDF: Meta-learning Signed Distance Functions"

MetaSDF: Meta-learning Signed Distance Functions Project Page | Paper | Data Vincent Sitzmann*, Eric Ryan Chan*, Richard Tucker, Noah Snavely Gordon W

Vincent Sitzmann 100 Jan 01, 2023