The official code for paper "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Modeling".

Overview

R2D2

This is the official code for paper titled "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Modeling". The current repo is refactored from the original version used in the paper. If meet any issue, please feel free to feedback.

Data

Train

Multi-GPUs

For training from scratch in a single machine with multiple GPUs, please follow scripts below:

CORPUS_PATH=
OUTPUT_PATH=
NODE_NUM=

python -m torch.distributed.launch \
    --nproc_per_node $NODE_NUM R2D2_trainer.py --batch_size 16 \
    --min_len 2 \
    --max_batch_len 512 \
    --max_line -1 \
    --corpus_path $CORPUS_PATH \
    --vocab_path data/en_bert/bert-base-uncased-vocab.txt \
    --config_path data/en_bert/config.json \
    --epoch 60 \
    --output_dir $OUTPUT_PATH \
    --window_size 4 \
    --input_type txt

Single-GPU

CORPUS_PATH=
OUTPUT_PATH=

python trainer.R2D2_trainer \
    --batch_size 16 \
    --min_len 2 \
    --max_batch_len 512 \
    --max_line -1 \
    --corpus_path $CORPUS_PATH \
    --vocab_path data/en_bert/bert-base-uncased-vocab.txt \
    --config_path data/en_bert/config.json \
    --epoch 10 \
    --output_dir $OUTPUT_PATH \
    --input_type txt

Evaluation

Evaluating the bidirectional language model task.

CORPUS_PATH=path to training corpus
VOCAB_DIR=directory of vocab.txt
MODEL_PATH=path to model.bin
CONFIG_PATH=path to config.json

python lm_eval_buckets.py \
    --model_name R2D2 \
    --dataset test \
    --config_path CONFIG_PATH \
    --model_path MODEL_PATH \
    --vocab_dir VOCAB_DIR \
    --corpus_path CORPUS_PATH

For evaluating F1 score on constituency trees, please refer to https://github.com/harvardnlp/compound-pcfg/blob/master/compare_trees.py

Evaluating compatibility with dependency trees: Download WSJ dataset and convert to dependency trees by Stanford CoreNLP(https://stanfordnlp.github.io/CoreNLP/). As WSJ is not a free dataset, it's not included in our project. Please refer to the files in data/predict_trees for detail format of tree induced.

python eval_tree.py \
    --pred_tree_path path_to_tree_induced \
    --ground_truth_path path_to_dependency_trees
    --vocab_dir VOCAB_DIR

On-going work

  1. Re-implement whole model to increase GPU utility ratio.
  2. Pre-train on large corpus

Contact

[email protected] and [email protected]

You might also like...
Official code repository of the paper Learning Associative Inference Using Fast Weight Memory by Schlag et al.

Learning Associative Inference Using Fast Weight Memory This repository contains the offical code for the paper Learning Associative Inference Using F

Official PyTorch code for CVPR 2020 paper
Official PyTorch code for CVPR 2020 paper "Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision"

Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision https://arxiv.org/abs/2003.00393 Abstract Active learning (AL) aims to min

Official Code for ICML 2021 paper
Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"

Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng Internati

CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

selfcontact This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] It includes the main function

CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

SMPLify-XMC This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright Lic

Official code of paper "PGT: A Progressive Method for Training Models on Long Videos" on CVPR2021

PGT Code for paper PGT: A Progressive Method for Training Models on Long Videos. Install Run pip install -r requirements.txt. Run python setup.py buil

This is the official code of our paper
This is the official code of our paper "Diversity-based Trajectory and Goal Selection with Hindsight Experience Relay" (PRICAI 2021)

Diversity-based Trajectory and Goal Selection with Hindsight Experience Replay This is the official implementation of our paper "Diversity-based Traje

Official repository with code and data accompanying the NAACL 2021 paper "Hurdles to Progress in Long-form Question Answering" (https://arxiv.org/abs/2103.06332).

Hurdles to Progress in Long-form Question Answering This repository contains the official scripts and datasets accompanying our NAACL 2021 paper, "Hur

Official code for paper
Official code for paper "Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight"

Demysitifing Local Vision Transformer, arxiv This is the official PyTorch implementation of our paper. We simply replace local self attention by (dyna

Comments
  • question about perplexity measures with R2D2 original model

    question about perplexity measures with R2D2 original model

    I have a few minor questions about the R2D2 PPPL measurements and their implementation.

    Q1: In the paper, it says PPPL is defined as, exp(-(1/N) sum(L(S)))

    This makes sense. But in the evaluation code here,

                    log_p_sums, b_c, pppl = self.predictor(ids, self.bucket_size, self.get_bucket_id)
                    PPPL += (pppl - PPPL) / counter
                    print(PPPL, file=f_out)
    

    We are outputting PPPL without taking the exponential. I assume the numbers in the paper are actually 2^{PPPL} here right? assuming we are using 2 as the base. I simply load a random BERT model, PPPL outputted here is around 10.4, 2^{10.4} ~= 1351, which is about right.

    Q2: For pretraining the BERT model baseline, are you guys loading the same dataset as in the link below? or loading some default huggingface dataset? https://github.com/alipay/StructuredLM_RTDT/tree/r2d2/data/en_wiki

    Sorry to throw random questions at you, but this would be very helpful for me to build something on top of this.

    Thanks.

    opened by frankaging 4
  • an potential issue found for the nn.MultiheadAttention module setup

    an potential issue found for the nn.MultiheadAttention module setup

    Hi Authors!

    Thanks for sharing this repo, I enjoyed when reading your paper, and I am working on a related project. As I am going through the code, I found one potential issue with the current setup. I will (1) explain the issue, and (2) provide a simple test case that I ran on my end. Please help with verifying.

    Issue:

    • nn.MultiheadAttention module inside the BinaryEncoder module is set with batch_first=True, however it seems like we are passing in Q, K, V matrics without the first dimension being the batch dimension.

    Code Analysis: In r2d2.py, it is calling the encoder here, as the following

            tasks_embedding = self.embedding(task_ids)  # (?, 2, dim)
            input_embedding = torch.cat([tasks_embedding, tensor_batch], dim=1)  # (?, 4, dim)
            outputs = self.tree_encoder(input_embedding.transpose(0, 1)).transpose(0, 1)  # (? * batch_size, 4, dim)
    

    We can see that input_embedding is definitely with the first dimension being the batch_size as it concat with the embeddings from the nn.embedding module. Before we call self.tree_encoder, .transpose(0, 1) makes the the second dimension of the input being the batch_size instead. Specifically, the first dimension, in this case, is always 4.

    Testing Done: I simply add some logs inside TreeEncoderLayer as,

        def forward(self, src, src_mask=None, pos_ids=None):
            """
            :param src: concatenation of task embeddings and representation for left and right.
                        src shape: (task_embeddings + left + right, batch_size, dim)
            :param src_mask:
            :param pos_ids:
            :return:
            """
            if len(pos_ids.shape) == 1:
                sz = src.shape[0]  # sz: batch_size
                pos_ids = pos_ids.unsqueeze(0).expand(sz, -1)  # (3, batch_size)
            position_embedding = self.position_embedding(pos_ids)
            print("pre: ", src.shape)
            print("pos_emb: ", position_embedding.shape)
            output = self.self_attn(src + position_embedding, src + position_embedding, src, attn_mask=src_mask)
            src2 = output[0]
            attn_weights = output[1]
            print("attn_w: ", attn_weights.shape)
            src = src + self.dropout1(src2)
            src = self.norm1(src)
            src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
            src = src + self.dropout2(src2)
            src = self.norm2(src)
            print("post: ", src.shape)
            return src
    

    And this is what I get,

    pre:  torch.Size([4, 8, 768])
    pos_emb:  torch.Size([4, 8, 768])
    attn_w:  torch.Size([4, 8, 8])
    post:  torch.Size([4, 8, 768])
    

    Summary: It seems like for r2d2.py, the self-attention is not on those 4 tokens (2 special prefix + left and right children embedding), but it is on the full collection of candidates with their children.

    I saw this issue is not presented in r2d2_cuda.py as,

                outputs = self.tree_encoder(
                    input_embedding)  # (? * batch_size, 4, dim)
    

    This is great. I have not checked the rest of the code for r2d2_cuda.py though. With this, I am wondering are the numbers from either of your papers need to be updated with this potential issue? Either way, I am not blocked by this potential issue, and I was inspired quite a lot by your codebase. Thanks!

    opened by frankaging 3
  • 关于backbone的疑问。

    关于backbone的疑问。

    作者你好,非常感谢你的贡献,我觉得你的工作很有意义,感觉是一个新方向。 有2个疑问需要请教一下:

    1. encoder 使用 transformer,基于注意力的模型,其能力很大部门来源于能通过注意力机制编码出上下文中有用的信息,但这里每次输入只有 [SUM], [CLS], [token1], [token2] 共4个,上下文短,个人感觉 transformer 可能不是最合适的,有试过其它编码器吗?比如gru,或者textCNN?
    2. 有办法并行编码吗?虽然 transformer 的时间复杂度高,但是GPU并行编码很好解决了训练时间长的问题。从论文的E图看 CKY 树编码,一个 token 要分别编码几次,这样会不会导致训练时间实际更长?如,3层 R2D2 比 12 层 transformer 训练数据时间更长? 谢谢作者。
    opened by wulaoshi 1
Releases(fast-R2D2)
Owner
Alipay
Ant Group Open Source
Alipay
PyTorch implementation of "Continual Learning with Deep Generative Replay", NIPS 2017

pytorch-deep-generative-replay PyTorch implementation of Continual Learning with Deep Generative Replay, NIPS 2017 Results Continual Learning on Permu

Junsoo Ha 127 Dec 14, 2022
3D mesh stylization driven by a text input in PyTorch

Text2Mesh [Project Page] Text2Mesh is a method for text-driven stylization of a 3D mesh, as described in "Text2Mesh: Text-Driven Neural Stylization fo

Threedle (University of Chicago) 649 Dec 27, 2022
Official pytorch implementation of the AAAI 2021 paper Semantic Grouping Network for Video Captioning

Semantic Grouping Network for Video Captioning Hobin Ryu, Sunghun Kang, Haeyong Kang, and Chang D. Yoo. AAAI 2021. [arxiv] Environment Ubuntu 16.04 CU

Hobin Ryu 43 Nov 25, 2022
[CVPR'22] COAP: Learning Compositional Occupancy of People

COAP: Compositional Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2022 paper COAP: Lear

Marko Mihajlovic 111 Dec 11, 2022
Weakly-supervised object detection.

Wetectron Wetectron is a software system that implements state-of-the-art weakly-supervised object detection algorithms. Project CVPR'20, ECCV'20 | Pa

NVIDIA Research Projects 342 Jan 05, 2023
PyTorch implementation for STIN

STIN This repository contains PyTorch implementation for STIN. Abstract: In single-photon LiDAR, photon-efficient imaging captures the 3D structure of

Yiweins 2 Nov 22, 2022
This is the code repository for the paper "Identification of the Generalized Condorcet Winner in Multi-dueling Bandits" (NeurIPS 2021).

Code Repository for the Paper "Identification of the Generalized Condorcet Winner in Multi-dueling Bandits" (To appear in: Proceedings of NeurIPS20

1 Oct 03, 2022
Resources for our AAAI 2022 paper: "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification".

LOREN Resources for our AAAI 2022 paper (pre-print): "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification". DEMO System Check out o

Jiangjie Chen 37 Dec 27, 2022
An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners

An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners This is a coarse version for MAE, only make the pretrain model, the fine

FlyEgle 214 Dec 29, 2022
A reimplementation of DCGAN in PyTorch

DCGAN in PyTorch A reimplementation of DCGAN in PyTorch. Although there is an abundant source of code and examples found online (as well as an officia

Diego Porres 6 Jan 08, 2022
Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

yzf 1 Jun 12, 2022
A tutorial on training a DarkNet YOLOv4 model for the CrowdHuman dataset

YOLOv4 CrowdHuman Tutorial This is a tutorial demonstrating how to train a YOLOv4 people detector using Darknet and the CrowdHuman dataset. Table of c

JK Jung 118 Nov 10, 2022
Real life contra a deep learning project built using mediapipe and openc

real-life-contra Description A python script that translates the body movement into in game control. Welcome to all new real life contra a deep learni

Programminghut 7 Jan 26, 2022
The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"

Swin-Unet The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"(https://arxiv.org/abs/2105.05537). A validatio

869 Jan 07, 2023
The Adapter-Bot: All-In-One Controllable Conversational Model

The Adapter-Bot: All-In-One Controllable Conversational Model This is the implementation of the paper: The Adapter-Bot: All-In-One Controllable Conver

CAiRE 37 Nov 04, 2022
PyTorch code for: Learning to Generate Grounded Visual Captions without Localization Supervision

Learning to Generate Grounded Visual Captions without Localization Supervision This is the PyTorch implementation of our paper: Learning to Generate G

Chih-Yao Ma 41 Nov 17, 2022
A script helps the user to update Linux and Mac systems through the terminal

Description This script helps the user to update Linux and Mac systems through the terminal. All the user has to install some requirements and then ru

Roxcoder 2 Jan 23, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
Supervised & unsupervised machine-learning techniques are applied to the database of weighted P4s which admit Calabi-Yau hypersurfaces.

Weighted Projective Spaces ML Description: The database of 5-vectors describing 4d weighted projective spaces which admit Calabi-Yau hypersurfaces are

Ed Hirst 3 Sep 08, 2022
ilpyt: imitation learning library with modular, baseline implementations in Pytorch

ilpyt The imitation learning toolbox (ilpyt) contains modular implementations of common deep imitation learning algorithms in PyTorch, with unified in

The MITRE Corporation 11 Nov 17, 2022