Resources for our AAAI 2022 paper: "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification".

Overview

LOREN

Resources for our AAAI 2022 paper (pre-print): "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification".

front

DEMO System

Check out our demo system! Note that the results will be slightly different from the paper, since we use an up-to-date Wikipedia as the evidence source whereas FEVER uses Wikipedia dated 2017.

Dependencies

  • CUDA > 11
  • Prepare requirements: pip3 install -r requirements.txt.
    • Also works for allennlp==2.3.0, transformers==4.5.1, torch==1.8.1.
  • Set environment variable $PJ_HOME: export PJ_HOME=/YOUR_PATH/LOREN/.

Download Pre-processed Data and Checkpoints

  • Pre-processed data at Google Drive. Unzip it and put them under LOREN/data/.

    • Data for training a Seq2Seq MRC is at data/mrc_seq2seq_v5/.
    • Data for training veracity prediction is at data/fact_checking/v5/*.json.
      • Note: dev.json uses ground truth evidence for validation, where eval.json uses predicted evidence for validation. This is consistent with the settings in KGAT.
    • Evidence retrieval models are not required for training LOREN, since we directly adopt the retrieved evidence from KGAT, which is at data/fever/baked_data/ (using only during pre-processing).
    • Original data is at data/fever/ (using only during pre-processing).
  • Pre-trained checkpoints at Huggingface Models. Unzip it and put them under LOREN/models/.

    • Checkpoints for veracity prediciton are at models/fact_checking/.
    • Checkpoint for generative MRC is at models/mrc_seq2seq/.
    • Checkpoints for KGAT evidence retrieval models are at models/evidence_retrieval/ (not used in training, displayed only for the sake of completeness).

Training LOREN from Scratch

For quick training and inference with pre-processed data & pre-trained models, please go to Veracity Prediction.

First, go to LOREN/src/.

1 Building Local Premises from Scratch

1) Extract claim phrases and generate questions

You'll need to download three external models in this step, i.e., two models from AllenNLP in parsing_client/sentence_parser.py and a T5-based question generation model in qg_client/question_generator.py. Don't worry, they'll be automatically downloaded.

  • Run python3 pproc_client/pproc_questions.py --roles eval train val test
  • This generates cached json files:
    • AG_PREFIX/answer.{role}.cache: extracted phrases are stored in the field answers.
    • QG_PREFIX/question.{role}.cache: generated questions are stored in the field cloze_qs, generate_qs and questions (two types of questions concatenated).

2) Train Seq2Seq MRC

Prepare self-supervised MRC data (only for SUPPORTED claims)
  • Run python3 pproc_client/pproc_mrc.py -o LOREN/data/mrc_seq2seq_v5.
  • This generates files for Seq2Seq training in a HuggingFace style:
    • data/mrc_seq2seq_v5/{role}.source: concatenated question and evidence text.
    • data/mrc_seq2seq_v5/{role}.target: answer (claim phrase).
Training Seq2Seq
  • Go to mrc_client/seq2seq/, which is modified based on HuggingFace's examples.
  • Follow script/train.sh.
  • The best checkpoint will be saved in $output_dir (e.g., models/mrc_seq2seq/).
    • Best checkpoints are decided by ROUGE score on dev set.

3) Run MRC for all questions and assemble local premises

  • Run python3 pproc_client/pproc_evidential.py --roles val train eval test -m PATH_TO_MRC_MODEL/.
  • This generates files:
    • {role}.json: files for veracity prediction. Assembled local premises are stored in the field evidential_assembled.

4) Building NLI prior

Before training veracity prediction, we'll need a NLI prior from pre-trained NLI models, such as DeBERTa.

  • Run python3 pproc_client/pproc_nli_labels.py -i PATH_TO/{role}.json -m microsoft/deberta-large-mnli.
  • Mind the order! The predicted classes [Contradict, Neutral, Entailment] correspond to [REF, NEI, SUP], respectively.
  • This generates files:
    • Adding a new field nli_labels to {role}.json.

2 Veracity Prediction

This part is rather easy (less pipelined :P). A good place to start if you want to skip the above pre-processing.

1) Training

  • Go to folder check_client/.
  • See what scripts/train_*.sh does.

2) Testing

  • Stay in folder check_client/
  • Run python3 fact_checker.py --params PARAMS_IN_THE_CODE
  • This generates files:
    • results/*.predictions.jsonl

3) Evaluation

  • Go to folder eval_client/

  • For Label Accuracy and FEVER score: fever_scorer.py

  • For CulpA (turn on --verbose in testing): culpa.py

Citation

If you find our paper or resources useful to your research, please kindly cite our paper (pre-print, official published paper coming soon).

@misc{chen2021loren,
      title={LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification}, 
      author={Jiangjie Chen and Qiaoben Bao and Changzhi Sun and Xinbo Zhang and Jiaze Chen and Hao Zhou and Yanghua Xiao and Lei Li},
      year={2021},
      eprint={2012.13577},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
Jiangjie Chen
Ph.D. student.
Jiangjie Chen
CUda Matrix Multiply library.

cumm CUda Matrix Multiply library. cumm is developed during learning of CUTLASS, which use too much c++ template and make code unmaintainable. So I de

49 Dec 27, 2022
Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Oral)

CMT Code for paper Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Best Paper Award) [Paper] [Site] Directory Struc

Zhaokai Wang 198 Dec 27, 2022
Piotr - IoT firmware emulation instrumentation for training and research

Piotr: Pythonic IoT exploitation and Research Introduction to Piotr Piotr is an emulation helper for Qemu that provides a convenient way to create, sh

Damien Cauquil 51 Nov 09, 2022
Pytorch implementation for reproducing StackGAN_v2 results in the paper StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN-v2 StackGAN-v1: Tensorflow implementation StackGAN-v1: Pytorch implementation Inception score evaluation Pytorch implementation for reproduci

Han Zhang 809 Dec 16, 2022
Code of paper "Compositionally Generalizable 3D Structure Prediction"

Compositionally Generalizable 3D Structure Prediction In this work, We bring in the concept of compositional generalizability and factorizes the 3D sh

Songfang Han 30 Dec 17, 2022
(CVPR2021) DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation

DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation CVPR2021(oral) [arxiv] Requirements python3.7 pytorch==

W-zx-Y 85 Dec 07, 2022
Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.

Machine Learning Sleep Schedule Tracker What is it? Convolutional neural network web app trained to track our infant’s sleep schedule using our Google

g-parki 7 Jul 15, 2022
A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).

Attention Walk ⠀⠀ A PyTorch Implementation of Watch Your Step: Learning Node Embeddings via Graph Attention (NIPS 2018). Abstract Graph embedding meth

Benedek Rozemberczki 303 Dec 09, 2022
Few-NERD: Not Only a Few-shot NER Dataset

Few-NERD: Not Only a Few-shot NER Dataset This is the source code of the ACL-IJCNLP 2021 paper: Few-NERD: A Few-shot Named Entity Recognition Dataset.

THUNLP 319 Dec 30, 2022
Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

61 Jan 07, 2023
Pytorch implementation of Generative Models as Distributions of Functions 🌿

Generative Models as Distributions of Functions This repo contains code to reproduce all experiments in Generative Models as Distributions of Function

Emilien Dupont 117 Dec 29, 2022
Data pipelines for both TensorFlow and PyTorch!

rapidnlp-datasets Data pipelines for both TensorFlow and PyTorch ! If you want to load public datasets, try: tensorflow/datasets huggingface/datasets

1 Dec 08, 2021
Style-based Neural Drum Synthesis with GAN inversion

Style-based Drum Synthesis with GAN Inversion Demo TensorFlow implementation of a style-based version of the adversarial drum synth (ADS) from the pap

Sound and Music Analysis (SoMA) Group 29 Nov 19, 2022
Exploring Image Deblurring via Blur Kernel Space (CVPR'21)

Exploring Image Deblurring via Encoded Blur Kernel Space About the project We introduce a method to encode the blur operators of an arbitrary dataset

VinAI Research 118 Dec 19, 2022
A Unified Framework and Analysis for Structured Knowledge Grounding

UnifiedSKG 📚 : Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models Code for paper UnifiedSKG: Unifying and Mu

HKU NLP Group 370 Dec 21, 2022
🐥A PyTorch implementation of OpenAI's finetuned transformer language model with a script to import the weights pre-trained by OpenAI

PyTorch implementation of OpenAI's Finetuned Transformer Language Model This is a PyTorch implementation of the TensorFlow code provided with OpenAI's

Hugging Face 1.4k Jan 05, 2023
Keras community contributions

keras-contrib : Keras community contributions Keras-contrib is deprecated. Use TensorFlow Addons. The future of Keras-contrib: We're migrating to tens

Keras 1.6k Dec 21, 2022
Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

xTune Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning. Environment DockerFile: dancingsoul/pytorch:xTune Install the f

Bo Zheng 42 Dec 09, 2022
A study project using the AA-RMVSNet to reconstruct buildings from multiple images

3d-building-reconstruction This is part of a study project using the AA-RMVSNet to reconstruct buildings from multiple images. Introduction It is exci

17 Oct 17, 2022
Repository For Programmers Seeking a platform to show their skills

Programming-Nerds Repository For Programmers Seeking Pull Requests In hacktoberfest ❓ What's Hacktoberfest 2021? Hacktoberfest is the easiest way to g

42 Oct 29, 2022