Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Oral)

Overview

CMT

Code for paper Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Best Paper Award)

[Paper] [Site]

Directory Structure

  • src/: code of the whole pipeline

    • train.py: training script, take a npz as input music data to train the model

    • model.py: code of the model

    • gen_midi_conditional.py: inference script, take a npz (represents a video) as input to generate several songs

    • src/video2npz/: convert video into npz by extracting motion saliency and motion speed

  • dataset/: processed dataset for training, in the format of npz

  • logs/: logs that automatically generate during training, can be used to track training process

  • exp/: checkpoints, named after val loss (e.g. loss_13_params.pt)

  • inference/: processed video for inference (.npz), and generated music(.mid)

Preparation

  • clone this repo

  • download lpd_5_prcem_mix_v8_10000.npz from HERE and put it under dataset/

  • download pretrained model loss_8_params.pt from HERE and put it under exp/

  • install ffmpeg=3.2.4

  • prepare a Python3 conda environment

    pip install -r py3_requirements.txt
  • prepare a Python2 conda environment (for extracting visbeat)

    • pip install -r py2_requirements.txt
    • open visbeat package directory (e.g. anaconda3/envs/XXXX/lib/python2.7/site-packages/visbeat), replace the original Video_CV.py with src/video2npz/Video_CV.py

Training

  • If you want to use another training set: convert training data from midi into npz under dataset/

    python midi2numpy_mix.py --midi_dir /PATH/TO/MIDIS/ --out_name data.npz 
  • train the model

    python train.py -n XXX -g 0 1 2 3
    
    # -n XXX: the name of the experiment, will be the name of the log file & the checkpoints directory. if XXX is 'debug', checkpoints will not be saved
    # -l (--lr): initial learning rate
    # -b (--batch_size): batch size
    # -p (--path): if used, load model checkpoint from the given path
    # -e (--epochs): number of epochs in training
    # -t (--train_data): path of the training data (.npz file) 
    # -g (--gpus): ids of gpu
    # other model hyperparameters: modify the source .py files

Inference

  • convert input video (MP4 format) into npz (use the Python2 environment)

    cd src/video2npz
    sh video2npz.sh ../../videos/xxx.mp4
    • try resizing the video if this takes a long time
  • run model to generate .mid :

    python gen_midi_conditional.py -f "../inference/xxx.npz" -c "../exp/loss_8_params.pt"
    
    # -c: checkpoints to be loaded
    # -f: input npz file
    # -g: id of gpu (only one gpu is needed for inference) 
    • if using another training set, change decoder_n_class in gen_midi_conditional to the decoder_n_class in train.py
  • convert midi into audio: use GarageBand (recommended) or midi2audio

    • set tempo to the value of tempo in video2npz/metadata.json
  • combine original video and audio into video with BGM

    ffmpeg -i 'xxx.mp4' -i 'yyy.mp3' -c:v copy -c:a aac -strict experimental -map 0:v:0 -map 1:a:0 'zzz.mp4'
    
    # xxx.mp4: input video
    # yyy.mp3: audio file generated in the previous step
    # zzz.mp4: output video
Owner
Zhaokai Wang
Undergraduate student from Beihang University
Zhaokai Wang
Weakly Supervised Text-to-SQL Parsing through Question Decomposition

Weakly Supervised Text-to-SQL Parsing through Question Decomposition The official repository for the paper "Weakly Supervised Text-to-SQL Parsing thro

14 Dec 19, 2022
Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition (NeurIPS 2019)

MLCR This is the source code for paper Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition. Xuesong Niu, Hu Han, Shiguang

Edson-Niu 60 Nov 29, 2022
Aspect-Sentiment-Multiple-Opinion Triplet Extraction (NLPCC 2021)

The code and data for the paper "Aspect-Sentiment-Multiple-Opinion Triplet Extraction" Requirements Python 3.6.8 torch==1.2.0 pytorch-transformers==1.

慢半拍 5 Jul 02, 2022
MIRACLE (Missing data Imputation Refinement And Causal LEarning)

MIRACLE (Missing data Imputation Refinement And Causal LEarning) Code Author: Trent Kyono This repository contains the code used for the "MIRACLE: Cau

van_der_Schaar \LAB 15 Dec 29, 2022
Employs neural networks to classify images into four categories: ship, automobile, dog or frog

Neural Net Image Classifier Employs neural networks to classify images into four categories: ship, automobile, dog or frog Viterbi_1.py uses a classic

Riley Baker 1 Jan 18, 2022
SEC'21: Sparse Bitmap Compression for Memory-Efficient Training onthe Edge

Training Deep Learning Models on The Edge Training on the Edge enables continuous learning from new data for deployed neural networks on memory-constr

Brown University Scale Lab 4 Nov 18, 2022
[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

[CVPR 2021] Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Fudan Zhang Vision Group 897 Jan 05, 2023
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023
Few-shot Learning of GPT-3

Few-shot Learning With Language Models This is a codebase to perform few-shot "in-context" learning using language models similar to the GPT-3 paper.

Tony Z. Zhao 224 Dec 28, 2022
[ICLR 2021] "CPT: Efficient Deep Neural Network Training via Cyclic Precision" by Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin

CPT: Efficient Deep Neural Network Training via Cyclic Precision Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin Accep

26 Oct 25, 2022
机器学习、深度学习、自然语言处理等人工智能基础知识总结。

说明 机器学习、深度学习、自然语言处理基础知识总结。 目前主要参考李航老师的《统计学习方法》一书,也有一些内容例如XGBoost、聚类、深度学习相关内容、NLP相关内容等是书中未提及的。

Peter 445 Dec 12, 2022
OcclusionFusion: realtime dynamic 3D reconstruction based on single-view RGB-D

OcclusionFusion (CVPR'2022) Project Page | Paper | Video Overview This repository contains the code for the CVPR 2022 paper OcclusionFusion, where we

Wenbin Lin 193 Dec 15, 2022
PFFDTD is an open-source FDTD simulator for 3D room acoustics

PFFDTD is an open-source FDTD simulator for 3D room acoustics

Brian Hamilton 34 Nov 24, 2022
Implementation of ICCV19 Paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network"

OANet implementation Pytorch implementation of OANet for ICCV'19 paper "Learning Two-View Correspondences and Geometry Using Order-Aware Network", by

Jiahui Zhang 225 Dec 05, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
Random Forests for Regression with Missing Entries

Random Forests for Regression with Missing Entries These are specific codes used in the article: On the Consistency of a Random Forest Algorithm in th

Irving Gómez-Méndez 1 Nov 15, 2021
Implementation for Simple Spectral Graph Convolution in ICLR 2021

Simple Spectral Graph Convolutional Overview This repo contains an example implementation of the Simple Spectral Graph Convolutional (S^2GC) model. Th

allenhaozhu 64 Dec 31, 2022
[CVPR2021 Oral] UP-DETR: Unsupervised Pre-training for Object Detection with Transformers

UP-DETR: Unsupervised Pre-training for Object Detection with Transformers This is the official PyTorch implementation and models for UP-DETR paper: @a

dddzg 430 Dec 23, 2022
Codes for building and training the neural network model described in Domain-informed neural networks for interaction localization within astroparticle experiments.

Domain-informed Neural Networks Codes for building and training the neural network model described in Domain-informed neural networks for interaction

DIDACTS 0 Dec 13, 2021