Exploring Image Deblurring via Blur Kernel Space (CVPR'21)

Overview

Exploring Image Deblurring via Encoded Blur Kernel Space

About the project

We introduce a method to encode the blur operators of an arbitrary dataset of sharp-blur image pairs into a blur kernel space. Assuming the encoded kernel space is close enough to in-the-wild blur operators, we propose an alternating optimization algorithm for blind image deblurring. It approximates an unseen blur operator by a kernel in the encoded space and searches for the corresponding sharp image. Due to the method's design, the encoded kernel space is fully differentiable, thus can be easily adopted in deep neural network models.

Blur kernel space

Detail of the method and experimental results can be found in our following paper:

@inproceedings{m_Tran-etal-CVPR21, 
  author = {Phong Tran and Anh Tran and Quynh Phung and Minh Hoai}, 
  title = {Explore Image Deblurring via Encoded Blur Kernel Space}, 
  year = {2021}, 
  booktitle = {Proceedings of the {IEEE} Conference on Computer Vision and Pattern Recognition (CVPR)} 
}

Please CITE our paper whenever this repository is used to help produce published results or incorporated into other software.

Open In Colab

Table of Content

Getting started

Prerequisites

  • Python >= 3.7
  • Pytorch >= 1.4.0
  • CUDA >= 10.0

Installation

git clone https://github.com/VinAIResearch/blur-kernel-space-exploring.git
cd blur-kernel-space-exploring


conda create -n BlurKernelSpace -y python=3.7
conda activate BlurKernelSpace
conda install --file requirements.txt

Training and evaluation

Preparing datasets

You can download the datasets in the model zoo section.

To use your customized dataset, your dataset must be organized as follow:

root
├── blur_imgs
    ├── 000
    ├──── 00000000.png
    ├──── 00000001.png
    ├──── ...
    ├── 001
    ├──── 00000000.png
    ├──── 00000001.png
    ├──── ...
├── sharp_imgs
    ├── 000
    ├──── 00000000.png
    ├──── 00000001.png
    ├──── ...
    ├── 001
    ├──── 00000000.png
    ├──── 00000001.png
    ├──── ...

where root, blur_imgs, and sharp_imgs folders can have arbitrary names. For example, let root, blur_imgs, sharp_imgs be REDS, train_blur, train_sharp respectively (That is, you are using the REDS training set), then use the following scripts to create the lmdb dataset:

python create_lmdb.py --H 720 --W 1280 --C 3 --img_folder REDS/train_sharp --name train_sharp_wval --save_path ../datasets/REDS/train_sharp_wval.lmdb
python create_lmdb.py --H 720 --W 1280 --C 3 --img_folder REDS/train_blur --name train_blur_wval --save_path ../datasets/REDS/train_blur_wval.lmdb

where (H, C, W) is the shape of the images (note that all images in the dataset must have the same shape), img_folder is the folder that contains the images, name is the name of the dataset, and save_path is the save destination (save_path must end with .lmdb).

When the script is finished, two folders train_sharp_wval.lmdb and train_blur_wval.lmdb will be created in ./REDS.

Training

To do image deblurring, data augmentation, and blur generation, you first need to train the blur encoding network (The F function in the paper). This is the only network that you need to train. After creating the dataset, change the value of dataroot_HQ and dataroot_LQ in options/kernel_encoding/REDS/woVAE.yml to the paths of the sharp and blur lmdb datasets that were created before, then use the following script to train the model:

python train.py -opt options/kernel_encoding/REDS/woVAE.yml

where opt is the path to yaml file that contains training configurations. You can find some default configurations in the options folder. Checkpoints, training states, and logs will be saved in experiments/modelName. You can change the configurations (learning rate, hyper-parameters, network structure, etc) in the yaml file.

Testing

Data augmentation

To augment a given dataset, first, create an lmdb dataset using scripts/create_lmdb.py as before. Then use the following script:

python data_augmentation.py --target_H=720 --target_W=1280 \
			    --source_H=720 --source_W=1280\
			    --augmented_H=256 --augmented_W=256\
                            --source_LQ_root=datasets/REDS/train_blur_wval.lmdb \
                            --source_HQ_root=datasets/REDS/train_sharp_wval.lmdb \
			    --target_HQ_root=datasets/REDS/test_sharp_wval.lmdb \
                            --save_path=results/GOPRO_augmented \
                            --num_images=10 \
                            --yml_path=options/data_augmentation/default.yml

(target_H, target_W), (source_H, source_W), and (augmented_H, augmented_W) are the desired shapes of the target images, source images, and augmented images respectively. source_LQ_root, source_HQ_root, and target_HQ_root are the paths of the lmdb datasets for the reference blur-sharp pairs and the input sharp images that were created before. num_images is the size of the augmented dataset. model_path is the path of the trained model. yml_path is the path to the model configuration file. Results will be saved in save_path.

Data augmentation examples

Generate novel blur kernels

To generate a blur image given a sharp image, use the following command:

python generate_blur.py --yml_path=options/generate_blur/default.yml \
		        --image_path=imgs/sharp_imgs/mushishi.png \
			--num_samples=10
			--save_path=./res.png

where model_path is the path of the pre-trained model, yml_path is the path of the configuration file. image_path is the path of the sharp image. After running the script, a blur image corresponding to the sharp image will be saved in save_path. Here is some expected output: kernel generating examples Note: This only works with models that were trained with --VAE flag. The size of input images must be divisible by 128.

Generic Deblurring

To deblur a blurry image, use the following command:

python generic_deblur.py --image_path imgs/blur_imgs/blur1.png --yml_path options/generic_deblur/default.yml --save_path ./res.png

where image_path is the path of the blurry image. yml_path is the path of the configuration file. The deblurred image will be saved to save_path.

Image deblurring examples

Deblurring using sharp image prior

First, you need to download the pre-trained styleGAN or styleGAN2 networks. If you want to use styleGAN, download the mapping and synthesis networks, then rename and copy them to experiments/pretrained/stylegan_mapping.pt and experiments/pretrained/stylegan_synthesis.pt respectively. If you want to use styleGAN2 instead, download the pretrained model, then rename and copy it to experiments/pretrained/stylegan2.pt.

To deblur a blurry image using styleGAN latent space as the sharp image prior, you can use one of the following commands:

python domain_specific_deblur.py --input_dir imgs/blur_faces \
		    --output_dir experiments/domain_specific_deblur/results \
		    --yml_path options/domain_specific_deblur/stylegan.yml  # Use latent space of stylegan
python domain_specific_deblur.py --input_dir imgs/blur_faces \
		    --output_dir experiments/domain_specific_deblur/results \
		    --yml_path options/domain_specific_deblur/stylegan2.yml  # Use latent space of stylegan2

Results will be saved in experiments/domain_specific_deblur/results. Note: Generally, the code still works with images that have the size divisible by 128. However, since our blur kernels are not uniform, the size of the kernel increases as the size of the image increases.

PULSE-like Deblurring examples

Model Zoo

Pretrained models and corresponding datasets are provided in the below table. After downloading the datasets and models, follow the instructions in the testing section to do data augmentation, generating blur images, or image deblurring.

Model name dataset(s) status
REDS woVAE REDS ✔️
GOPRO woVAE GOPRO ✔️
GOPRO wVAE GOPRO ✔️
GOPRO + REDS woVAE GOPRO, REDS ✔️

Notes and references

The training code is borrowed from the EDVR project: https://github.com/xinntao/EDVR

The backbone code is borrowed from the DeblurGAN project: https://github.com/KupynOrest/DeblurGAN

The styleGAN code is borrowed from the PULSE project: https://github.com/adamian98/pulse

The stylegan2 code is borrowed from https://github.com/rosinality/stylegan2-pytorch

Owner
VinAI Research
VinAI Research
An introduction to bioimage analysis - http://bioimagebook.github.io

Introduction to Bioimage Analysis This book tries explain the main ideas of image analysis in a practical and engaging way. It's written primarily for

Bioimage Book 20 Nov 28, 2022
Official PyTorch implementation of the paper Image-Based CLIP-Guided Essence Transfer.

TargetCLIP- official pytorch implementation of the paper Image-Based CLIP-Guided Essence Transfer This repository finds a global direction in StyleGAN

Hila Chefer 221 Dec 13, 2022
Learning trajectory representations using self-supervision and programmatic supervision.

Trajectory Embedding for Behavior Analysis (TREBA) Implementation from the paper: Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Y

58 Jan 06, 2023
Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery"

SegSwap Pytorch implementation of paper "Learning Co-segmentation by Segment Swapping for Retrieval and Discovery" [PDF] [Project page] If our project

xshen 41 Dec 10, 2022
Pytorch library for fast transformer implementations

Transformers are very successful models that achieve state of the art performance in many natural language tasks

Idiap Research Institute 1.3k Dec 30, 2022
Cascaded Pyramid Network (CPN) based on Keras (Tensorflow backend)

ML2 Takehome Project Reimplementing the paper: Cascaded Pyramid Network for Multi-Person Pose Estimation Dataset The model uses the COCO dataset which

Vo Van Tu 1 Nov 22, 2021
This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021.

PyTorch implementation of DAQ This is an official implementation of the paper "Distance-aware Quantization", accepted to ICCV2021. For more informatio

CV Lab @ Yonsei University 36 Nov 04, 2022
Code for Motion Representations for Articulated Animation paper

Motion Representations for Articulated Animation This repository contains the source code for the CVPR'2021 paper Motion Representations for Articulat

Snap Research 851 Jan 09, 2023
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Zhengzhong Tu 5 Sep 16, 2022
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax

Simple Transformer An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax. Note: The only ex

29 Jun 16, 2022
PHOTONAI is a high level python API for designing and optimizing machine learning pipelines.

PHOTONAI is a high level python API for designing and optimizing machine learning pipelines. We've created a system in which you can easily select and

Medical Machine Learning Lab - University of Münster 57 Nov 12, 2022
Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation

A Theoretical Analysis of the Repetition Problem in Text Generation This repository share the code for the paper "A Theoretical Analysis of the Repeti

Zihao Fu 37 Nov 21, 2022
Camera-caps - Examine the camera capabilities for V4l2 cameras

camera-caps This is a graphical user interface over the v4l2-ctl command line to

Jetsonhacks 25 Dec 26, 2022
An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astronomy data.

EquivariantSelfAttention An implementation of Equivariant e2 convolutional kernals into a convolutional self attention network, applied to radio astro

2 Nov 09, 2021
Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set

Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set This is the repository for the Deep Learning proje

Robert Krug 3 Feb 06, 2022
A denoising diffusion probabilistic model synthesises galaxies that are qualitatively and physically indistinguishable from the real thing.

Realistic galaxy simulation via score-based generative models Official code for 'Realistic galaxy simulation via score-based generative models'. We us

Michael Smith 32 Dec 20, 2022
Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size.

Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size. The hub data layout enables rapid transformations and streaming of data while training m

Activeloop 5.1k Jan 08, 2023
This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras)

Yogi-Optimizer_Keras This is an implementation of Googles Yogi-Optimizer in Keras (tf.keras) The NeurIPS-Paper can be found here: http://papers.nips.c

14 Sep 13, 2022
Code for Max-Margin Contrastive Learning - AAAI 2022

Max-Margin Contrastive Learning This is a pytorch implementation for the paper Max-Margin Contrastive Learning accepted to AAAI 2022. This repository

Anshul Shah 12 Oct 22, 2022